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Elliptical Billiards in the Minkowski plane
and Extremal Polynomials

Anani Adabrah1, Vladimir Dragovic1,2, Milena Radnovic2,3

1 The University of Texas at Dallas
2 MI SANU

3 University of Sydney

We derive necessary and sufficient conditions for periodic and for elliptic
periodic trajectories of billiards within an ellipse in the Minkowski plane in
terms of an underlining elliptic curve. Equivalent conditions are derived in
terms of polynomial-functional equations as well. The corresponding polyno-
mials are related to the classical extremal polynomials. The similarities and
differences with respect to previously studied Euclidean case are indicated.
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Transformation of the equations of dynamics

Alain Albouy1

1 Observatoire de Paris, Paris, France

The theory of the “Transformation of the equations of dynamics” was
mainly concluded in Painlevé [1] and Thomas [2]. The subject is obviously
important: to classify the transformations that send a “natural” mechanical
system onto another one, the changes of time being allowed. But this theory
was soon misunderstood: Whittaker [3] presents it as an exercise, of which
he gives the solution... which is obviously wrong. The theory was then
universally forgotten. We claim that the reasons for this bad reception are:

• A hesitation about the hypothesis: “natural” forces are they derived
from a potential?

• A too complicated conclusion, unrelated with the classical examples,
which are not even recalled.

• The lack of examples.

We will try to improve the situation of the three points, by also discussing a
third hypothesis, by relating the conclusion with the examples, and by giving
new examples.

References

[1] Painlevé P. Sur les transformations des équations de la dynamique// Comptes
Rendus, 1896, vol. 123, pp. 392–395.

[2] Thomas, T. Y. On the Transformation of the Equations of Dynamics// Journal of
mathematics and physics, 1946, vol. 25, pp. 191–208.

[3] Whittaker, E. T. A Treatise on the Analytical Dynamics of Particles and Rigid
Bodies. Cambridge: at the University Press, 1937, p. 261.
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Движение плоскости в вязкой высокодисперсной среде,
не насыщенной жидкостью

Виктор В. Алексеев1, Сергей А.Васильев2, Сергей И.Чучкалов3

1 Чебоксарский кооперативный институт, Чебоксары, Россия
2,3 ЧГУ имени И.Н. Ульянова, Чебоксары, Россия

Воздействие почвообрабатывающего орудия на почву представляет
собой движение твердого тела в дисперсной многофазной среде и сопро-
вождается рядом сложных физико-механических процессов. При сильно
развитой удельной поверхности дисперсной среды наблюдаются суще-
ственные отклонения от известных расчетных формул. В связи с этим
предлагается решение для описания силы трения, основанное на ком-
плексном учете вкладов, вносимых в силу трения твердой и жидкой фа-
зами. Вклад жидкой фазы, обусловливающий эффекты налипания, опре-
деляется по основной гидрофизической характеристике (ОГХ) пористой
среды [1], что позволяет учесть как пористость дисперсной среды, так и
степень заполнения жидкостью порового пространства. Обобщение экс-
периментальных и расчетных данных [2] на основе указанного подхода
приводит к выражению (1) для коэффициента трения почвы:

f = αΩw2/3(1− βw)(1 −Π0) + γL, (1)

где Ω — удельная (по объему) поверхность почвенных частиц; w — объ-
емная влажность почвы; Π0 — пористость сухого почвенного образца;
L — липкость почвы; α, β и γ — коэффициенты.

Список литературы

[1] Сысуев В.А. Получение основной гидрофизической характеристики почв
на основе идеализированных моделей / В.А. Сысуев, И.И.Максимов,
В. В.Алексеев, В.И.Максимов // Доклады Россельхозакадемии. 2013. №5.
С. 63–66.

[2] Алексеев В. В. Гидрофизика почв в мелиорации: монография /
В. В.Алексеев, И.И.Максимов. –– Чебоксары: «Новое время», 2017. ––
280 с.
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Evolution of Lagrangian manifolds and asymptotic
solutions to the linearized equations of gas dynamics

Anna I. Allilueva

Institute for Problems in Mechanics, Moscow, Russia

We study evolution of Lagrangian manifolds, corresponding to short-
wave solutions of linearized equations of gas dynamics. We discuss also
decomposition of the resolving operator for this system and asymptotics of
the Cauchy problem with localized initial data.
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Study of the boundary layer near outer surface
of the porous catalyst pellet during the reaction-diffusion

process in it

Vsevolod V.Andreev

Chuvash State University, Cheboksary, Russia

Catalytic reactions of arbitrary type (1), occurring in porous pellets of
spherical, cylindrical and slab geometrical forms, are analyzed.

0 =
n∑

i=1

apiAi, p = 1, . . . , k. (1)

Here Ai are the symbols of substances participated in reactions (1); a
p
i are

the stoichiometric coefficients (for the initial substances api < 0 and for the
reaction products api > 0); the index p defines stage number in reactions (1).
Reaction (1) in porous catalyst pellets is coupled by diffusion of substances
Ai in the pores [1, 2]. During catalytic processes of the type (1) reagents
Ai are transferred to pellets by moving of outer reaction mixture. At small
distance from the pellet the reaction mixture rate decreases to zero on its
outer surface. As result, the boundary layer appears. Influence of boundary
layer hydrodynamics on the reaction-diffusion processes in the porous pellets
is studied. Formulas, linking the reagents concentrations and temperature in
the incompressible reaction mixture core with their values on pellet external
surface, were obtained.

References

[1] Andreev V. V., Vozyakov V. I., Kol’tsov N. I. The reaction mixture stream flow-
ing around porous granules of catalyst and chemical reaction on their inner
surface // Chemical Physics Reports, 1995. Vol. 13. No. 11. P. 1848–1860.

[2] Andreev V. V. Formation of a “Dead Zone” in Porous Structures During Pro-
cesses That Proceeding under Steady-State and Unsteady-State Conditions //
Review Journal of Chemistry, 2013. Vol. 3. No. 3. P. 239—269.
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Обобщенные многофакторные вычислительные модели
детонации конденсированных и газовых систем

Дарья А.Ануфриева1, Виктор С. Абруков1, Александр Н. Лукин2,
Charlie Oommen3, V. R. Sanalkumar4 and Nichith Chandrasekaran3

1 ЧГУ имени И.Н. Ульянова, Чебоксары, Россия
2 Западно-Кавказский научный центр, Туапсе, Россия

3 Индийский институт науки, Бангалор, Индия
4 Технологический колледж Кумарагуру, Коимбатур, Индия

Показаны возможности применения одного из основных методов ин-
теллектуального анализа данных — искусственных нейронных сетей [1–
3] при моделировании детонации конденсированных и газовых систем
[4, 5]. Созданы многофакторные вычислительные модели детонации, поз-
воляющие решать разнообразные прямые и обратные задачи: определять
зависимость скорости детонации от состава молекулы системы и ее плот-
ности, определять, какой состав молекул систем и плотность обеспечи-
вает требуемую скорость детонации. Показано, что искусственные ней-
ронные сети позволяют обобщать результаты экспериментальных иссле-
дований на принципиально новом уровне.

Исполняемые модули представленных в данной работе моделей с ин-
струкцией по их использованию размещены на сайте проекта РФФИ
http://www.wcrc.ru/Indo-Russian-JRP.html и на страничке проекта на сай-
те: https://www.researchgate.net/project/Development-of-the-Multifactorial-
Computational-Models-of-the-Energetic-Materials-Combustion-and-Detonation-
by-means-of-Data-Science-Methods.Они доступны также по прямым ссыл-
кам: http://www.wcrc.ru/INSTRUCTION.pdf; http://www.wcrc.ru/
DETONATION-1.rar.

Все заинтересованные лица и организации могут их использовать для
знакомства с результатами работы, приобретения опыта работы с мето-
дами интеллектуального анализа данных и проведения самостоятельных
исследований с помощью данных моделей.

Работа выполнена при поддержке Департамента науки и технологий
(DST), Индия и Российского фонда фундаментальных исследований (РФ-
ФИ), Россия (проект №16-53-48010) в рамках междисциплинарного на-
учного исследования DST-РФФИ, программа сотрудничества в рамках
Гранта INT/RUS/РФФИ/IDIR/P-3/2016.
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Hidden Maxwell stratum
in Euler’s elastica problem

Andrey A.Ardentov1

1 Ailamazyan Program Systems Institute of RAS, Pereslavl-Zalessky, Russia

This investigation continues study of the classical problem on stationary
configurations of an elastic rod on a plane. Length of the rod, ends of the
rod and directions at the ends are fixed. The problem was first studied by
Leonard Euler in 1744 [1] and it is still an open problem. Euler described
a family of curves containing the solutions, which is called Euler elasticae.
It is known [2] that sufficiently small pieces of Euler elasticae are optimal,
i.e. they have minimum of the potential energy. In theory, the point, where
an optimal curve loses its optimality, is called a cut point. Usually several
optimal curves arrive to such points, so the points have multiplicity more
than 1 and are called Maxwell points. Work [3] studies the symmetric case
containing all solutions with multiplicity 3 and 4. An open problem is to
describe explicitly solutions with multiplicity 2. This work describes them
numerically. Therefore, we numerically describe the set of all cut points for
the problem, i.e. the cut locus.
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Dynamics of vortex lattices

Elizaveta M.Artemova1, Alexander A. Kilin1

1 Udmurt State University, Izhevsk, Russia

This paper is concerned with the problem of the interaction of squared
orthogonal vortex lattices, which is equivalent to the problem of the motion
of point vortices on a torus. In [1] it is shown that the Hamiltonian describing
N vortex lattices can be represented as

H = − 1

4π

N∑′

k,n=1

ΓkΓn

( ∞∑

m=−∞
ln

(
cosh(xk − xn − 2πm)− cos(yk − yn)

cosh(2πm)

)
−

− (xk − xn)
2

2π

)

,

(1)

where xk, yk are the coordanates of the kth vortex, and Γk is the strength of
the kth vortex. The equations of motion of the system of N vortex lattices
can be represented in Hamiltonian form and admit, in addition to the energy
integral (1), two first integrals

Q =
N∑

k=1

Γkxk, P =
N∑

k=1

Γkyk. (2)

Let us consider two vortex lattices (N = 2) and perform a reduction of
the equations of motion using the first integrals (2):

Q = Γ1x1 + Γ2x2, P = Γ1y1 + Γ2y2, ξ = x1 − x2, η = y1 − y2.
(3)

The system obtained is 2π-periodic, i.e., the system describes the motion
on a torus. The phase portrait of the reduced system taking into account
periodicity is represented in Fig. 1 a). To restore the trajectory in absolute
space, it is necessary to consider the phase portrait without gluing (see in
Fig. 1 b)).

It can be seen from Fig. 1 that the reduced system has three fixed points
and separatrix solutions connecting these points.

Further we consider the problem of the motion of three vortex lattices
(N = 3) in the case of nonzero total strength. This problem in the case of
zero total strength is integrable [2].
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(a) (b)

Fig. 1. Phase portrait a) with gluing b) without gluing

We perform reduction of the equations in the case considered on the level
set of the first integrals Q,P . To do so, we make the following change of
variables:

Q = Γ1x1 + Γ2x2 + Γ3x3, ξ1 = x1 − x2, ξ2 = x2 − x3,

P = Γ1y1 + Γ2y2 + Γ3y3, η1 = y1 − y2, η2 = y2 − y3.
(4)

The equations of motion on the fixed level set of the first integrals Q,P
can be represented in Hamiltonian form ξ̇1 = {ξ1, H}, ξ̇2 = {ξ2, H}, η̇1 =
{η1, H}, η̇2 = {η2, H} with the following Poisson brackets

{ξi, ξj} = 0, {ηi, ηj} = 0, {ξ1, η2} = {ξ2, η1} = − 1

Γ2
,

{ξ1, η1} =
1

Γ1
+

1

Γ2
, {ξ2, η2} =

1

Γ2
+

1

Γ3
.

Poincaré maps at different values of energy E = H(ξ1, ξ2, η1, η2) and the
secant η1 = 0 are shown in Fig. 2. The maps are represented on isoenergetic
surfaces E = H(ξ1, ξ2, η1 = 0, η2) embedded in three-dimensional space
(ξ1, ξ2, η2). It can be seen from Fig. 2 that as the level set of the energy
integral changes, the topological type of the section of isoenergetic surfaces
can change. Also, chaotic layers are seen, which confirms non-integrability
of the problem under consideration.

Let us consider the problem of the motion of four vortex lattices (N = 4)
in the case of nonzero total strength. As in [3], it can be shown that the
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(a) (b) (c)

Fig. 2. Maps at a) E = −0.25, Γ1 = Γ2 = Γ3 = 1, b) E = −0.15, Γ1 = Γ2 =
Γ3 = 1, c) E = 0, Γ1 = Γ2 = Γ3 = 1.

equations of vortex motion on a torus admit the invariant manifold

x1 − x4 = x2 − x3, y1 − y4 = y2 − y3. (5)

A complete proof and reduction of equations can be found in our paper [4].
The equations in new variables can be represented as

ξ̇i = {ξi, H(ξ1, ξ2, η1, η2)}, η̇i = {ηi, H(ξ1, ξ2, η1, η2)}, i = 1, 2, (6)

where H is a restriction of the Hamiltonian (1) to the invariant manifold (5)
written in new variables, and the Poisson bracket has form

{ξi, ξj} = 0, {ηi, ηj} = 0, {ξi, ηj} =
1

2

(
1

Γ2
+

2δij − 1

Γ1

)
.

The resulting system depends on two parameters Γ1, Γ2. We assume that
Γ1 = 1. This follows from an arbitrary choice of time units.

As in the problem of the motion of three vortices, we construct Poincaré
maps for different values of energy E = H(ξ1, ξ2, η1, η2) and the secant
η1 = 0 on the isoenergetic surfaces E = H(ξ1, ξ2, η1 = 0, η2).

It can be seen from Figs. 3 thatthe surfaces have complex form and their
type changes depending on the values of parameters E and Γ2. For example,
the surface shown in Fig. 3 b) is a sphere with five handles. On the Poincaré
maps the chaotic layers can be seen, so the system is non-integrable.

This work was supported by the RFBR under grants 18-38-00344 mol a
and 17-01-00846-a.
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Fig. 3. Maps at a) E = −0.35, Γ2 = 1, b) E = −0.21, Γ2 = 1, c) E = 0, Γ2 = 1
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On orbital stability of periodic motions of a heavy rigid
body with a fixed point in the Hess case

Boris S. Bardin

Moscow Aviation Institute (National Research University)
Faculty of Information Technologies and Applied Mathematics

Department of Mechatronics and Theoretical Mechanics, Moscow, Russia

We study the problem of orbital stability for pendulum-like oscillations
and rotations of a rigid body with a fixed point in a uniform gravitational
field. The mass geometry of the body corresponds to the Hess case. The
Hamiltonian for the canonical system of equations of perturbed motion de-
pends on three parameters. Two of them describe the mass geometry of the
body and the third one parameterizes the family of the periodic orbits.

By an analytical study of the linearized system it was shown that pendulum-
like rotations are orbitally unstable in the sense of Lyapunov for any values
of parameters. The linear analysis of orbital stability for pendulum-like
oscillations has shown that in this case the first order identical resonance
takes place, that is the characteristic equation of the linearized system al-
ways has double root, which is equal to 1 for any values of parameters. It
was established that in the three-dimensional space of parameters there exists
two-dimensional surface, where the Jordan normal form of the monodromy
matrix is diagonal. For parameters values corresponding to the above surface
the pendulum-like oscillations are orbitally stable in linear approximation and
outside of this surface the pendulum-like oscillations are orbitally unstable
in linear approximation. We have also shown that the nonlinear problem
of orbital stability for pendulum-like oscillations cannot be solve by taking
into account terms of any finite order, that is the so-called transcendental
case takes place. To solve the nonlinear problem of orbital stability we use
the method developed in [1]. It has allowed us to prove that pendulum-like
oscillations are orbitally unstable in the sense of Lyapunov.

This work was carried out at the Moscow Aviation Institute (National
Research University) within the framework of the state assignment (project
No 3.3858.2017/4.6).
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Dynamic of nonholonomic Suslov problem under periodic
control: unbounded speed-up and strange attractors

Ivan A.Bizyaev1, Alexey V. Borisov1 and Ivan S.Mamaev2

1 Udmurt State University,
ul. Universitetskaya 1, Izhevsk, 426034 Russia
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Consider the motion of a multicomponent mechanical system which in-
cludes:

— a rigid body with a fixed point, which cannot rotate in a direction e
fixed relative to the body:

(ω, e) = 0, (1)

where ω is the angular velocity of the body.

— n material points, with each point Pi moving inside the rigid body
according to a prescribed law of time ri(t).

We make the following assumptions concerning the motion of point
masses and parameters of the rigid body:

— Material points move in such a way that the moment of inertia of
the system I = const does not depend on time and the gyrostatic
momentum has the form k(t) =

(
0, k2(t), k3(t)

)
, where k2(t), k3(t)

are periodic functions of time with the same period T .

— The axis Ox1 is directed along the principal axis of inertia of the
system (I13 = 0):

I =

⎛

⎝
I11 0 0
0 I22 I23
0 I23 I33

⎞

⎠ .

In other words, the vector e always lies in the principal plane of inertia.

In this case, the problem reduces to investigating the following reduced
system, which describes the angular velocity of the rigid body:

u̇ = −vu−K(t)v − Λ̇(t),

v̇ = u2 +K(t)u,
(2)

where K(t) and Λ(t) are periodic functions of time.
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Numerical experiments show that in this case the following statement
holds:

If the average is

〈G〉 = 1

T

T∫

0

K(t)
(
Λ̇(t)− K̇(t)

)
dt > 0, (3)

then the system (2) exhibits trajectories that are unbounded in v and have
the following asymptotics:

v(t) = Ct
1
2 + o(t

1
2 ), u(t) = −K(t) + o(t−

1
2 ),

C =
√
2〈G〉.

(4)

If 〈G〉 < 0, then there are no unbounded trajectories. The case 〈G〉 = 0
requires a separate analysis.

If 〈G〉 < 0, then all trajectories of the system (2) are bounded. Indeed,
numerical experiments show that in this case the trajectories display the
following qualitatively different behavior patterns:

1. Stability and multistability: as t → +∞, all trajectories tend to one
or several periodic solutions of the system (2).

2. Chaotic oscillations: the system exhibits a strange attractor.

The work was supported by the RFBR grant no. 18-31-00344 mol a.
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Jumps of energy near a separatrix in slowly time
dependent Hamiltonian systems

Sergey V. Bolotin

Moscow Steklov Mathematical Institute and University of Wisconsin

We consider natural Hamiltonian systems slowly depending on time:

H(q, p, τ) =
1

2
‖p‖2 + Vτ (q), τ̇ = ε � 1.

For small ε the energy E(t) = H(q(t), p(t), τ(t)) changes slowly. For
one degree of freedom, when level curves H(·, ·, τ) = E of the frozen
Hamiltonian are closed curves, there is an adiabatic invariant I(τ, E) which
changes much slower than energy. Then the energy changes gradually with
(τ, E) following a level curve of I(τ, E). Neishtadt [1] showed that the
adiabatic invariant is destroyed for trajectories passing near a figure eight
separatrix of a hyperbolic equilibrium: generically the energy will have
quasi-random jumps of order ε with frequency of order 1/| ln ε|.

We partly extend Neishtadt’s result to multidimensional systems. Suppose
that Vτ has a nondegenerate maximum at qτ . If the configuration space is
compact, there always exist homoclinic orbits to qτ . Under certain conditions
we construct trajectories which have prescribed jumps of energy of order ε
with frequency 1/| ln ε| while staying distance of order ε away from the
homoclinic set. The proofs are based on a generalization of the method of
anti-integrable limit [2].

Gelfreigh and Turayev [3] showed that if the frozen system has compact
uniformly hyperbolic chaotic invariant sets on energy levels, then generically
there exist trajectories with energy having quasirandom jumps of order ε with
frequency of order 1. However, this result does not work near a homoclinic
set of an equilibrium since there is no uniform hyperbolicity.
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A note about integrable systems on low dimensional
Lie groups and Lie algebras

Alexey V. Bolsinov1,2, Jinrong Bao1
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2 Faculty of Mechanics and Mathematics, Moscow State University, 11992, Russia

The goal of the paper is to explain why any left-invariant Hamiltonian
system on (the cotangent bundle of) a 3-dimensonal Lie group G is Liouville
integrable. We derive this property from the fact that the coadjoint orbits of
G are two-dimensional so that the integrability of left-invariant systems is a
common property of all such groups regardless their dimension.

We also give normal forms for left-invariant Riemannian and sub-Rie-
mannian metrics on 3-dimensional Lie groups focusing on the case of solv-
able groups, as the cases of SO(3) and SL(2) have been already extensively
studied. Our description is explicit and is given in global coordinates on
G which allows one to easily obtain parametric equations of geodesics in
quadratures.
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Dynamics of a ball on a rotating cone

Alexey V. Borisov1,2, Tatiana B. Ivanova2, Alexander A. Kilin1,2,
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This paper investigates the motion of a completely dynamically symmet-
ric (in particular, homogeneous) ball rolling without slipping on a cone. The
cone rotates uniformly about its symmetry axis.

The dimensionless equations of motion of the ball relative to the moving
coordinate system (which rotates with angular velocity Ω relative to vertical
fixed axis) have a following form

J̃ω̇ = kω ×Ω+ (γ,ω)γ̇ − 2(γ,Ω)γ × ω +Ω2γ × r−
−(Ω, r)γ ×Ω+ γ × e3 +Mf ,

ρ̇ = sin θ(ω2 cosϕ− ω1 sinϕ),

ρϕ̇ = − sin θ(ω1 cosϕ+ ω2 sinϕ)− ω3 cos θ.

(1)

Fig. 1. The ball on a rotating cone

where J̃ = (k + 1)E − γ ⊗ γ, k =
I/(mR2), m and I are the mass and
the moment of inertia of the ball, Ω =
(0, 0,Ω) is the angular velocity of a
cone, ω is the angular velocity of the
ball, R is the radius of the ball, γ is
the normal at the point of contact, r =
(ρ cosϕ, ρ sinϕ, ρ/ tan θ) is the radius
vector of the center of mass of the ball,
e3 = (0, 0, 1), θ ∈ [0, π/2) is the con-
stant apex angle of the cone.

We investigate two cases of the system (1).
1. In one of cases we assume the existence of a non-holonomic constraint

corresponding to the absence of slipping at the point of contact, without
friction (Mf = 0).

The system possesses the Jacobi integral [3], which has the meaning of
generalized energy:

E =
1

2
(ω, J̃ω) + V (r), V (r) = −Ω2ρ2

2
+

ρ

tan θ
. (2)

30



In [4], two additional integrals linear in angular velocities were found for
the system of interest:

F1 = ω3 −
Ωcos θ

k + 1
ρ,

F2 = ρ
(
ω1 cosϕ+ ω2 sinϕ+

ω3

tan θ

)
− ρ2 (k + 2)Ω

2(k + 1) sin θ
.

(3)

Thus, the rolling of the ball on the surface of the cone is described
by a system of five differential equations (1). The system possesses three
integrals of motion (2), (3) and an invariant measure. Therefore, in this case
the system is integrable and can be reduced to quadratures according to the
Euler – Jacobi theorem [1].

On the level set of first integrals F1 = κ1, F2 = κ2, E = h+ U0(κ1, κ2)
quadratures have a following form:

ρ̇2 =
2 sin2 θ

k + 1
(h− Uκ(ρ)), ϕ̇ = − (k + 2)Ω

2(k + 1)
− κ2 sin θ

ρ2
, (4)

where Uκ(ρ) is the effective potential energy whose minima (maxima) cor-
respond to stable (unstable) periodic solutions of the system

Uκ(ρ) =
Ω2k2(sin2 θ + k)

8(k + 1)2 sin2 θ
ρ2 − cos θ(Ωk2κ1 − 2(k + 1) sin θ)

2(k + 1) sin2 θ
ρ−

−kκ1κ2 cos θ

ρ sin θ
+

(sin2 θ + k)κ2
2

2ρ2
.

(5)

To define possible types of motion we construct the bifurcation surface
in the space (κ1, κ2, h) (for example, see Fig. 2).

When κ1 > κ∗
1 (κ

∗
1 is the bifurcation point), there exist three fixed points,

two of which are stable and correspond to minima of Uκ(ρ) (see Fig. 2b).
2. In the second case, the ball is acted upon by the rolling friction torque

which linearly depends on the velocity:

M f = −αω, α = const.

It was shown in [2] that the trajectory of a ball moving on a plane under
the action of a constant external force and the friction torque M f is an
untwisting spiral. On a cone ball can depending on the initial conditions,
either move in an untwisting trajectory (the value of ρ and the height increase
in this case) or approach the vertex of the cone (the value of ρ and the height
decrease).
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Fig. 2. (a) Section of the bifurcation surface for κ2 = 1. (b) Effective potential
energy, the relevant phase portraits of the system (4) on a level set of the integrals
κ1 = 60, κ2 = 1, h = −2

Fig. 3. (a) Projections of the phase trajectories of the system (1) onto the plane (ρ, h)
and (b) graphs showing the dependence ρ(t), plotted for parameters Ω = 0.2, α =
0.1, h = 0.5, ρs = 1 and ρs = 5.3

We present an analysis of the dependence of the type of terminal motion
of the center of mass of the ball on initial conditions. For example, Figure
3a shows two projections of the phase trajectories of the system (1) onto
the plane (ρ, h) which demonstrate different types of terminal motion for the
same initial values of the level set of the energy integral. Figure 3b shows
the corresponding dependences ρ(t).

The work was carried out at MIPT within the framework of project 5-100
for state support for leading universities of the Russian Federation.
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Consider the problems of stability and destabilization of motion of a
material point in a gravitational field on a rotating paraboloid. Represent the
surface equation as

x3 =
1

2

(
x2
1 + bx2

2

)
. (1)

When b > 0, the paraboloid is elliptic, and when b < 0, it is hyperbolic.
In a (noninertial) coordinate system Ox1x2x3, which rotates together

with the surface (1), for a point of unit mass the Lagrangian of the system
can be represented as

L =
1

2

(
(ẋ1 − Ωx2)

2 + (ẋ2 +Ωx1)
2 + (x1ẋ1 + bx2ẋ2)

2
)
− 1

2
g
(
x2
1 + bx2

2

)
,

where Ω is the angular velocity of rotation of the paraboloid and g is the
free-fall acceleration.

The corresponding equations of motion are
(
∂L

∂ẋ

)·
− ∂L

∂x
= Q,

x = (x1, x2), Q =

(
Q

(0)
1 +Q

(0)
3

∂x3

∂x1
, Q

(0)
2 +Q

(0)
3

∂x3

∂x2

)
,

(2)

where
(
Q

(0)
1 , Q

(0)
2 , Q

(0)
3

)
is the three-dimensional vector of nonpotential

forces acting on the material point in R
3; this vector is assumed to be

tangent to the surface (1).
If Q = 0, then the system admits the energy integral

E =
1

2

(
ẋ2
1 + ẋ2

2 + (x1ẋ1 + bx2ẋ2)
2
)
− Ω2

2
(x2

1 + x2
2) +

g

2

(
x2
1 + bx2

2

)
. (3)

As we see, for integrability we need another additional integral.
Possible friction forces dealt with in this work are as follows.
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1◦ Internal viscous friction (internal damping), for which the drag force
opposes the relative velocity of the point:

Q
(0)
1 = −μẋ1, Q

(0)
2 = −μẋ2, Q

(0)
3 = −μẋ3,

where μ is the coefficient of friction. Substituting into (2) gives

Q = −μ̂ẋ = −∂Ri

∂ẋ
,

Ri =
1

2
(ẋ, μ̂ẋ), μ̂ = μ

(
1 + x2

1 bx1x2

bx1x2 1 + b2x2
2

)
,

(4)

where Ri is the Rayleigh function and μ̂ is a positive definite matrix.

2◦ External viscous friction (for example, air drag). In this case, the
friction force opposes the velocity of the point in the fixed coordinate
system:

Q
(0)
1 = −μ(ẋ1 − Ωx2), Q

(0)
2 = −μ(ẋ2 +Ωx1), Q

(0)
3 = −μẋ3.

In this case, we find

Q = −μ̂ẋ+ D̂x, D̂ =

(
0 μΩ

−μΩ 0

)
,

where μ̂ is a 2× 2 matrix defined in (4).

3◦ Dry friction:

Q
(0)
1 = −μN

v
ẋ1, Q

(0)
2 = −μN

v
ẋ2, Q

(0)
3 = −μN

v
ẋ3

v =
√
ẋ2
1 + ẋ2

2 + ẋ2
3,

N =
g + ẋ2

1 + bẋ2
2 + 2Ω(x1ẋ2 − bx2ẋ1) + Ω2(x2

1 + bx2
2)√

1 + x2
1 + b2x2

2

,

where N is the value of the reaction force. Thus, we obtain

Q = −N

v
μ̂ẋ, (5)

where μ̂ is also the matrix from (4).
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This work presents a detailed analysis of the problem of frictionless
motion of a material point on the surface of both a fixed and a rotat-
ing paraboloid. A bifurcation diagram is plotted for the case of a fixed
paraboloid. We also give a complete bifurcation analysis of the stability of
critical solutions and an analysis of regions of possible motion in configura-
tion space (Hill’s regions).

For the case of a rotating paraboloid, the linear stability of the equilib-
rium point at the vertex of the paraboloid is investigated. An analysis of
Hill’s regions depending on the value of the energy integral and the system
parameters is carried out. It is shown that, even in the case of unbounded
Hill’s regions, in phase space there can exist regions of bounded motion.
Regions of existence of bounded motions on the plane of the energy integral
and the system parameter are constructed. Using a numerical construction
of separatrix splitting, the nonintegrability of the problem is proved for the
case of a rotating paraboloid.

Also in this work the problem of a material point moving on the surface
of a rotating paraboloid in the presence of viscous friction forces is studied.
A linear stability analysis of equilibrium points is carried out. It is shown
that, in the case of viscous friction forces acting from the surface, the equi-
librium point at the vertex of the hyperbolic paraboloid is always unstable.
However, the instability pattern allows an interpretation of the behavior of
trajectories near an equilibrium point as a temporal stability.

In this work it is shown that the addition of viscous air drag forces, as
opposed to other friction forces, does not destroy the region of bounded mo-
tion. The above-mentioned types of behavior are illustrated by constructing
three-dimensional Poincaré maps of the system under consideration.

This work is carried out at MIPT under project 5–100 for state support
for leading universities of the Russian Federation.
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In this paper a problem of dynamics control of nonholonomic Chaplygin
systems is considered. A model of a skier or a snowboarder is chosen
as an example of these systems. A structure of its Lagrange function and
nonholonomic constraint equations allows us to set up the motion equations
in the Chaplygin’s form. The control is realized by extra forces defined by
the constraints that determine a required motion.

In some cases, generalized coordinates and velocities describing a motion
of a snowboarder or a skier can be rearranged into dependent and indepen-
dent parts, so the Lagrange function and the constraint equations do not
include the dependent ones. Then the system of motion equations for the
considered model can be written in Chaplygin’s form thereby reducing its di-
mension [1,2]. Papers by Borisov A.V. and colleagues [3], Karapetyan A.V.
and colleagues [4], Chernousko F.L. and colleagues [5,6], Mukharlyamov
and colleagues [7–9] and by a lot of other authors are devoted to the investi-
gation on the control of mechanical systems with friction and nonholonomic
constraints.

The snowboarder’s model is mechanical rod system with a board and a
link AB, which represents a leg (Fig. 1).

A simplified model of snowboarder’s dynamics corresponds to the sys-
tem of two rigid bodies with a hinge. The system is described by five
coordinates: ϕ0 — angle determining the direction of the board relative to
the axis OX , ϕ1 — angle counting from the OX-axis counterclockwise to
the projection of the l1 link onto the XOY plane, ψ1 — angle counting from
the projection l1 counterclockwise to the link itself and xA, yA — coordinates
of the board’s fastening to the leg. The mechanism in the plane of motion
is affected by the component of the gravitational acceleration g1 = g sinα,
directed along the OX-axis. Chaplygin’s approach is applied to construct a
system of differential motion equations of the nonholonomic system. Fas-
tening can be modelled by a system of two cylindrical hinges in the point A
and by two control torques defining the orientation of the leg. M1 provides
maintaining the leg pose in the vertical plane and M2 defines a rotation of
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Fig. 1. Multilink snowboarder’s model

the leg with respect to the board in the plane of motion XOY . The problem
is to determine the expressions of the control torques so the motion of the
model remains stable on its given trajectory. This can be accomplished by
introducing extra holonomic constraints setting the model’s motion mode.
Reaction forces of these constraints are determined through the method of
Lagrange multipliers. However, numerical integration of the motion equa-
tions with the Lagrange multipliers can not always provide a stable numerical
solution in relation to the constraint equations. So, introducing extra vari-
ables estimating deviations from the constraints and constructing using them
an expanded system of motion equations is required to solve the problem of
constraint stabilization.

This work was supported by RFBR grant (No. 19-08-00261A).
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Coupled semiconductor lasers are systems possessing complex dynamics
that are interesting for numerous applications in photonics. In this paper,
we first review earlier results on the existence and stability of asymmetric
phase-locked states of a single dimer consisting of two coupled semiconduc-
tor lasers with carrier density dynamics. We show that stable phase-locked
states of arbitrary asymmetry exist whose field amplitude ratio and phase dif-
ference can be dynamically controlled by appropriate current injection. We
emphasize the importance of Exceptional (fixed) Points, with large stabil-
ity domains and Hopf bifurcations, beyond which small-signal modulations
lead to sharp resonances and anti-resonances at very high frequencies. We
obtain limit cycles with frequencies ranging from a few to a hundred GHz
characterized by asymmetry and controllable via differential pumping and
optical frequency detuning. Finally, we describe our recent findings in op-
tically coupled arrays of driven dimers, each of which can perform limit
cycle oscillations, and study some fascinating phenomena that may prove
useful for applications in beam forming and beam shaping. Coupling in an
appropriate way large numbers of dimers, we find that they can exhibit os-
cillatory patterns involving high amplitude oscillations coexisting with very
low amplitude motions close to the unstable fixed points. Both behaviors are
shown to be spatially robust, when we calculate the discrete Laplacian of
their amplitudes for long times.
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The paper describes the system of activities and the importance of INS
with the possibility of implementation into robot control. The paper also
introduces the implementation of DC motor control, which is used to position
the rotary arm. Motor control includes current control, angular velocity,
and rotation of the motor shaft attached to the arm with respect to the
desired course of angular variation of the arm rotation. The DC motor
control structure is executed in MATLAB / Simulink. The arm movement is
examined using a mathematical model and a virtual dynamic model created
in MSC.ADAMS.

Accuracy of inertial sensors plays a key role in autonomous navigation.
Current inertial sensor errors are approximately 0.01◦/hr for gyroscopes and
100 μg for accelerometers. These errors are integrated over time and cause
a positioning error, which is expressed by measurement uncertainty per hour,
but is minimal.

The following is an example of how to move the robot arm in one
axis. Also the possibility to extend the result of the simulation of the arm
movement solved by the mathematical model in the virtual environment and
the MATLAB/Simulink program.
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We consider the motion of a satellite about its center of mass in a circu-
lar orbit in the Central Newtonian gravitational field. It is assumed that the
satellite is a rigid body and has the mass geometry of a plate, i.e. its main
central moments of inertia satisfy the ratio Jx + Jy = Jz . The equations of
motion of the satellite can be written in canonical form. They admit a par-
ticular solution describing the planar pendulum-like motion of the satellite,
in which its plane is perpendicular to the plane of the orbit [1]. Such mo-
tions are unstable with respect to perturbations of coordinates and velocities,
however, the problem of their orbital stability is that of interest.

The type of motion depends on the constant of the energy integral and is
either an oscillation or a rotation.

Orbital stability of planar oscillations was studied in [2–5]. In [6], a
rigorous analysis of the orbital stability of the planar periodic rotations of
the satellite is carried out. The values of the parameters corresponding to
the regions of orbital stability in the first approximation were found, for the
values of the parameters lying within these areas, conclusions were obtained
about the stability for most initial conditions and formal stability. Nonlinear
stability analysis has not been performed at the boundaries of the stability
regions previously.

In this paper we provide a stability analysis at the boundaries of the
region corresponding to that of the stability in the first approximation for the
reverse rotations (see Fig. 1).

The Hamiltonian of perturbed motion has two parameters — an inertial
parameter μ = Jx/Jy and the average angular velocity of the unperturbed
motion Ω.

The conclusions about the stability of the reverse rotations of a satellite
can be obtained on the basis of the analysis of the coefficients of the nor-
mal form of the Hamiltonian, which can be calculated using the algorithms
developed in [4, 7, 8]. These algorithms are based on the method proposed
in [9].
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Fig. 1. The region of orbital stability in the linear approximation for reverse rotations
of the satellite

Calculations performed in accordance with the above algorithms have
shown that at the boundary γ1 corresponding to the first order resonance
instability occurs. On the curve γ2 that implements the resonance of the
second order (combinational resonance), in a part of the curve marked with
a dotted line, there is formal orbital stability, in the area marked by the
dashed-dotted line is the instability.
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Применение римановых поверхностей в исследовании кавитацион-
ного обтекания распространено достаточно широко. Максимально пол-
но исследована задача обтекания двух пластин, поскольку в ней удает-
ся найти и аналитическое, и числовое решение. Если же пластин более
двух, то получить аналитическое решение не так просто.

Рассмотрим обтекание N пластинок, расположенных на одной пря-
мой и составляющих с ней малые углы наклона. Будем считать поток
жидкости плоским и установившимся, а саму жидкость — идеальной
несжимаемой. Вектор скорости на бесконечности направлен по прямой
и задается конечной величиной. Пусть только одна пластина обтекается
с кавитацией (будем считать таковой последнюю). Тогда необходимо за-
дать либо число кавитации, либо точку замыкания каверны, а оставший-
ся параметр найти в ходе решения задачи. Уравнения пластин и число
кавитации удовлетворяют условиям линеаризации.

Рассмотрим комплексную плоскость, в которой на действительной
оси расположим разрезы –– проекции пластин и каверны. Требуется най-
ти возмущенную комплексно сопряженную скорость W (z) = U − iV в
виде аналитической функции, у которой W (∞) = 0 и задается мни-
мая часть на всех берегах разрезов, кроме части последнего разреза. Эту
часть предстоит найти, учитывая, что на ней задается действительная
часть функции.

Решение получается явно после сведения задачи к краевой задаче Ри-
мана на римановой поверхности. В нем неизвестны действительные по-
стоянные и либо граница каверны, либо число кавитации. В некоторых
определенных случаях система содержит уравнения, линейные относи-
тельно всех неизвестных параметров.
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The paper considers the use of Euler elastic as an algorithm for optimal
control of a mobile nonholonomic robot. The task of determining the optimal
trajectory is difficult to calculate and not unambiguous, depending on the
criteria chosen as the best. The existing methods of planning trajectories are
based on the use of sinusoids and splines [1–4]. Existing methods cannot
provide the optimal trajectory for the n-trailer robot movement with the
condition of fixed orientation at the start and end points. Euler elastics [1,6]
allow to obtain optimal trajectories for single and n-trailer mobile robots
from the point of view of control, taking into account speed and orientation
at the start and end points. Locally elastics minimize the square of curvature:

∫
u2
E(s)ds → min . (1)

For robots, this is corresponds to uniform motion along elastica with local
minimization of maneuvers. Curvature for inflectional elastic is expressed
by the following equation:

uE(s) =
8kK

σ
cn
(
4K(pE +

s

σ
); k
)
, (2)

where k — is a parameter determining the shape of an elastica, σ — is a
parameter determining the length of a period, pE — is a parameter defining
the starting point of an elastica, K — is a complete elliptic integral of the
1st kind, cn() — is an Jacobi elliptic function.

Curvature for noninflectional elastic is expressed by the following equa-
tion:

uE(s) = ±4K

σ
dn
(
2K
(
pE +

s

σ

)
; k
)
, (3)

where dn() — is the Jacobi elliptic function.

49



The algorithm of obtaining elastic for a certain point is given in [7]. The
paper presents the results of modeling geometric errors with maximum devi-
ations of dimensions. The exact geometric parameters of the robot were cal-
culated by the method of least squares according to the results of experiments
with deviations of the prototype of a mobile robot from the ideal trajectory.
In addition, various acceleration and deceleration, providing movement along
the elastic, are considered. Full-scale experiments for the new defined geo-
metrical parameters and the nonlinear variant of acceleration was conducted
for the motion of the mobile robot along the inflection and non-inflection
elastics, and the motion along the trajectories planning the motion from the
start point with a fixed orientation to the end point at given angles. The ex-
periments qualitatively confirmed the observance of the forms of the given
trajectories. Also obtained quantitative indicators of deviations.

Combined theoretical and full-scale experiments results are shown in
Figure 1.

(a) (b)

Fig. 1. Ideal and experimentally obtained trajectories. The dotted line shows the
ideal trajectory, a solid line — experimental: a) trajectories of movement along the
inflectional elastic in the form of a loop; b) trajectories of movement along the
elastic with a start from one point with a fixed orientation and a stop to another with
a change in the orientation angle θ1 = (πn/4), n = 1, . . . , 8

The work of Yu.Karavaev, K. Efremov was supported by the grant of
RFBR 18-38-00454, the work of A. Ardentov was supported by the Russian
Science Foundation under grant 17-11-01387 and performed at the Aila-
mazyan Program Systems Institute of Russian Academy of Science
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High-speed transport system “Ekranoflot-Chuvashia”

Gennadiy A. Fedoreyev1, Alexander S. Znatkov1

1 Soyuzmortrans Ltd., Vladivostok, Russia

The project aims to:

• Creation of the first stage of the high-speed river transport system
(SRTS) “Ekranoflot-Chuvashia” with two local high-speed river lines
(SRTL) based on innovative water transport — ekranoplanes, with the
prospect of entering the regional lines in the lower Volga;

• Regular commercial transportation of passengers, mail and baggage
in the Volga trunk water area on transport lines between Cheboksary,
Kazan and Nizhny Novgorod, as well as river cruises.

The paper proposes options for constructing SRTS and provides an anal-
ysis of technical and economic assessments of the efficiency of high-speed
river passenger lines using modern Russian ekranoplanes.

Supported by the Russian Scientific and Technical Society of Ship-
builders of them ac A.N.Krylov.
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WIG — transformer for effective logistics in far east and
arctic

Gennadiy A. Fedoreyev1, Alexander Yu.Zhurenko1, Konstantin V. Gribov2,
Dmitry V. Nazarov3, Sergey M.Krivel4, Egor A. Galushko4

1 Soyuzmortrans Ltd., Vladivostok, Russia
2 Far Eastern Federal University, Vladivostok, Russia

3 Samara State Aerospace University named after ac. S. P. Koroleva, Samara, Russia
4 Irkutsk State University, Irkutsk, Russia

The aim of the project is to create a lightweight 2-seater high-speed, am-
phibious, WIG-boat — transformer for year-round individual and professional
use on the rivers, reservoirs and coastal waters in the absence of transport
infrastructure. The developed vehicle will combine several principles of
movement adapted to different operating conditions: on the ice, snow, water,
over water through its constructive transformation into a snowmobile, airboat
and ekranoplane to ensure a competitive advantage in the consumer market
for individual water transport.

Product purpose:

• Experimental studies of the dynamics of the on-screen maneuvering,
the seaworthiness of the start / landing modes of the WIG on the
seawaves;

• Working out technical solutions concept convertible modular collapsi-
ble design and industrial production technologies;

• Solving tasks: training in piloting, coastal and marine tourism, mon-
itoring of emergency situations, oceanographic, hydrographic, meteo-
rological research, fish-searching and fishing operations, including in
automatic unmanned mode.

The scientific background of the project is based on:

• studies of aero-hydrodynamic characteristics of the model of the RT-6
ground effect vehicle at KSTU. A.N. Tupolev;

• results of aerotube tests of the ET-2 model in the wind tunnel of the
Samara State Aerospace University them ac. S. P. Korolev and the
model — an analogue of MT1 in the Krylov State Research Center
them ac. A. N.Krylov;
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• research and optimization of the dynamics and aerodynamics of math-
ematical 3D models of ET-2, held at Irkutsk State University.

At this stage, work is performed on optimizing the aero-hydrodynamic
circuits of the transformer using air-tube testing and mathematical 3D mod-
eling. The preliminary values of aerodynamic quality are obtained and the
flight characteristics of the developed WIG are formed.

Supported by the Russian Scientific and Technical Society of Ship-
builders of them. ac A.N. Krylov.
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On some sufficient conditions
for hyperbolicity and topological mixing

Sergey D.Glyzin1, Andrey Yu.Kolesov1, Nikolay K. Rozov2

1 P.G.Demidov Yaroslavl State University, Yaroslavl, Russia
2 M.V. Lomonosov Moscow State University, Moscow, Russia

Consider the open set U ⊂ R
m, where m ≥ 2, and the map f : U →

R
m from C1, that is a diffeomorphism from U to f(U ) ⊂ R

m.
Suppose there exists an open bounded set V ⊂ U , such that the closure

f(V ) is in V and V ⊂ U . Then the diffeomorphism f permits in V the
attractor

A =
⋂

n�0

fn(V ). (1)

In the report certain sufficient conditions are proposed under which the at-
tractor (1) is hyperbolic and topologically mixing.

Let us formulate the definitions we need. Fix arbitrarily the norm || · ||Rm

in the space Rm. Next, for each point x ∈ A let us set the operators

D(fn(x)) = Df(xn−1) ◦Df(xn−2) ◦ . . . ◦Df(x0),

D(f−n(x)) = [Df(x−n)]
−1◦[Df(x−(n−1))]

−1◦. . .◦[Df(x−1)]
−1, n ∈ N,

where Df(x) – is a Frechet derivative for the map f, xj = f j(x), j ∈ Z.

Definition 1 (see [1, 2]). Let us say that the attractor (1) is hyperbolic,
if, firstly, for every x ∈ A the space R

m permits direct sum decomposition
Eu

x ⊕ Es
x of linear subspaces E

u
x , E

s
x and Df(x)Eu

x = Eu
f(x), Df(x)Es

x =

Es
f(x); secondly, there exist constants μ1, μ2 ∈ (0, 1), c1, c2 > 0, such that

||D(f−n(x))ξ||Rm ≤ c1μ
n
1 ||ξ||Rm ∀x ∈ A, ∀ ξ ∈ Eu

x , ∀n ∈ N,
||D(fn(x))ξ||Rm ≤ c2μ

n
2 ||ξ||Rm ∀x ∈ A, ∀ ξ ∈ Es

x, ∀n ∈ N.

Definition 2. We call f |A a topological mixing, if for every two
nonempty sets U, V ⊂ A, that are open in the topology of the space (A, ρ)
with metric ρ(x1, x2) = ||x1 − x2||Rm ∀x1, x2 ∈ R

m, there exists a natural
n0 = n0(U, V ), such that fn(U) ∩ V �= ∅ for all n ≥ n0.

Now let us describe constraints providing the attractor (1) hyperbolicity.

Condition 1. For ∀x ∈ V the spectrum σ(x) of the operator Df(x)
decomposes into two nonempty subsets σ1(x) ⊂ {λ ∈ C : |λ| > 1}, σ2(x) ⊂
{λ ∈ C : |λ| < 1}.
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The condition above leads to the decompositionRm=E1(x)⊕E2(x)∀x ∈
V , where the sum of subspaces E1(x), E2(x) is direct, Df(x)Ej(x) =
Ej(x), j = 1, 2 and the spectrums of Df(x)

∣∣
Ej(x)

, j = 1, 2 coincide with

σ1(x) and σ2(x) respectively. Next, the mentioned decomposition allows to
introduce projectors P (x), Q(x), which act on arbitrary vector ξ ∈ R

m by
the rules: ∀ ξ = ξ1(x) + ξ2(x), where ξ1(x) ∈ E1(x), ξ2(x) ∈ E2(x), we
have P (x)ξ = ξ1(x), Q(x)ξ = ξ2(x). From Condition 1 and representation
of these projectors via contour integrals we have continuity of P (x), Q(x)
on x ∈ V .

To formulate the next constraint we need the following operators:

Λj,1(x) = P (f(x))Df(x) : Ej(x) → E1(f(x)), j = 1, 2,

Λj,2(x) = Q(f(x))Df(x) : Ej(x) → E2(f(x)), j = 1, 2.

Assuming the invertibility of the operator Λ1,1(x) for ∀x ∈ V and
letting the norms in the spaces E1(x), E2(x) to be adopted from R

m, let us
introduce the values

α1 = max
x∈V

||Λ−1
1,1(x)||E1(f(x))→E1(x), α2 = max

x∈V
||Λ2,2(x)||E2(x)→E2(f(x)),

β1 = max
x∈V

||Λ1,2(x)||E1(x)→E2(f(x)), β2 = max
x∈V

||Λ2,1(x)||E2(x)→E1(f(x)).

Condition 2. Following inequalities hold

α1 < 1, α2 < 1, β1β2 < (1− α1)(1− α2)/α1. (2)

Theorem 1. Under Conditions 1, 2 the attractor (1) of the diffeomor-
phism f is hyperbolic.

Theorem 2. If in addition to Conditions 1, 2 the set V is connected and
at least one of the following requirements hold:

a) for ∀x1, x2 ∈ A we have Wu(x1) ∩W s(x2) �= ∅,
b) for ∀x ∈ A the set Wu(x) is dense in A, where as usual

W s(x) = {y ∈ V : ρ(fn(x), fn(y)) → 0, n → +∞},
Wu(x) = {y ∈ A : ρ(f−n(x), f−n(y)) → 0, n → +∞},

and ρ is a metric from Definition 2. Then f |A is a topological mixing.
Ideas of proofs of Theorems 1, 2 is the same as in papers [3], [4].

Namely, under Conditions 1, 2 the subspaces Eu
x , E

s
x from Definition 1 can

be found in parametric form Eu
x = {ξ = u1 + u2 ∈ R

m : u1 = u, u2 =
a(x)u, u ∈ E1(x)} and Es

x = {ξ = u1 + u2 ∈ R
m : u2 = u, u1 =
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b(x)u, u ∈ E2(x)}, where the linear operators a(x) : E1(x) → E2(x),
b(x) : E2(x) → E1(x) are continous on x ∈ A in the uniform operator
topology.

Next, from invariance conditions of Df(x)Eσ
x = Eσ

f(x), σ = u, s for
a(x), b(x) we get certain nonlinear operator equations to which the contract-
ing maps principle is applied (the validity of this principle in appropriate
functional spaces is guaranteed by inequalities (2)). As for the Theorem 2, if
its conditions are satisfied then the spectral decomposition of nonwandering
set NW (f |A) is trivial, that is, it contains from one connected basis set A.
It is known [2] that in this case f |A is a topological mixing.
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Connections and Time Reperametrizations in
Nonholonomic Mechanics

Borislav Gajić1, Božidar Jovanović1

1 Mathematical Institute SANU, Belgrade, Serbia

We consider nonholonomic system (M,L,D) on configuration space M
given with Lagrangian L and nonintegrable distribution D defined by linear
nonholonomic constraints. The equations of motion are obtained from the
Lagrange-d’Alembert principle. In classical works of Synge [14], Vranceanu
[18], Shouten [13], Wagner [15,16] the problem of motion of nonholonomic
systems from the geometric point of view is considered. The equations
can be rewritten in terms of suitable vector bundle connection ∇P over
configuration space M :

∇P
q̇ q̇ = −gradD V.

In the case when the potential V vanishes, the solutions becomes the geodesic
lines of ∇P . We recall on the extensions of the vector-bundle connection to
the linear connection on TM considered in [3,17] and [12], as well as on so
called partial connection (see [7]).

We compare various approaches in geometrical formulation of nonolo-
nomic systems by using affine connections, including the Chaplygin reduc-
tion performed by Bakša [1]. Although mentioned objects are very well
studied, some natural relationships between them are pointed out. In ad-
dition, we consider the Newton type equations on a Riemannian manifold
(M, g) and look for a conformal metric g∗ = f2g such that solutions of the
Newton equations, after a time reparametrization, become the geodesic lines
of g.

This is a generalization of the Chaplygin multiplier method for Hamil-
tonization of G-Chaplygin systems [4, 5]. Also, we obtain variants of the
Maupertuis principle in nonholonomic mechanics as they are given in [1,11].
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The problem of general multi-dimensional rigid bodies
rolling on the plane

Luis C. Garcı́a-Naranjo

IIMAS-UNAM, Mexico City, Mexico

We consider the rolling and rolling without spinning of multi-dimensional
rigid bodies of the plane. We identify cases of measure preservation, exis-
tence of first integrals and Hamiltonization that extend known results in 3D.
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MEMS Sensor of Force
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The paper is focused to design of the compact compliant mechanical body
(MM) that will be used as a transducer of the one-axis force to the distance
of two plates. The conversion principle of the distance to the frequency of
the electrical signal is carefully described in the article too.

Optimized sensor’s elastic body is shown in Fig. 1a and Fig. 1b shows
its transfer function as dependence between an acting load and distance of the
sensor’s plates. The analytical methods have been utilized for calculation of
the MM basic parameters. The optimization of dimensions and mechanical
body parameters by FEM analysis in Comsol Multiphysics ware executed as
a consequence of different results from analytical and numerical calculations
(3—10% for one flexure element [4]). As come out from calculations results
two groups of physical samples ware produced [1, 2]. The first MM was
produced from the PTFE by the water cutting technology; second MM is
printed by a 3D printer from Polylactic acid.

Fig. 1. a) Dimensions of designed elastic body, b) Dependences of acting force and
displacement plates of the elastic body (Polylactic acid, Teflon)

In both cases, the dependence between the distance of plates and acting
load (force) is inversely proportional. In the next step, it is necessary to
convert the distance of MM plates to the easily measurable electrical quan-
tities. Such are for instance time and frequency. Both quantities are most
accurately measurable SI units. In the MM should be integrated electrical
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Fig. 2. MEMS, 4 — MM, 3 — capacitor, 2 — inductor

part – parallel resonance circuit (PRO). The capacitor of the PRO will be
constituted by the MM’s plates.

The PRO’s resonance frequency ware sensed wireless by our developed
method based on the change of the high-frequency emitter dispersion param-
eters [3]. The article will compare theoretical values and measured values of
resonance frequencies depending on the acting force.
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Dynamics of toroidal bodies in a fluid

Yehor S. Hladkov1, Evgeny V.Vetchanin2
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This paper is concerned with studying the motion of heavy homogeneous
toroidal bodies of circular cross section in a fluid. To describe the motion
we introduce two coordinate systems: a fixed one, Oxyz, and the moving
one, O1e1e2e3,(see Fig. 1).

Fig. 1.

The motion is governed by the following equations:

Cv̇ = (Cv + a)× ω − μγ − F ,

Iω̇ = (Iω + b)× ω + (Cv + a)× v −G,

ṙ = QTv, α̇ = α× ω, β̇ = β × ω, γ̇ = γ × ω,

(1)

Q =

⎛

⎝
α1 β1 γ1
α2 β2 γ2
α3 β3 γ3

⎞

⎠ , Fi = fivi|vi|, Gi = giωi|ωi|

where v is the linear velocity of the body, ω is the angular velocity of the
body, F , G are resistance force and torque, C is the matrix taking into
account the mass of the body and the added masses, I is a matrix taking into
account the tensor of inertia of the body and the tensor of added moments of
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inertia, a and b are the constant vector taking into account circular motion
of a fluid through a hole of the body [1], r is the radius-vector of the center
of mass of the body, α, β, γ are the unit vectors directed along axes of the
fixed coordinate system, and fi, gi are the drag coefficients.

We perform the Motion Capture experiment with natural model of torus
(see Fig. 2b). To determining the drag coefficients fi, gi and vectors a, b we
minimise deviation between calculated trajectory and experimental one using
real coded genetic algorithm. The calculated and experimental trajectories
are shown in Fig. 2a.

(a) (b)

Fig. 2. a) projections of trajectory of the body on the coordinate planes of the system
Oxyz, b) Motion Capture experiment

More detailed description of results presented in [2].
This work was supported by the RFBR under grant 18-29-10050-mk.
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Robotic Devices

Jaroslav Hricko1, Stefan Havlik1, Rene Hartansky2

1 Institute of Informatics, Slovak Academy of Sciences, Banská Bystrica, Slovakia
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The miniaturization of the mechatronic devices lead to the utilization of
the novel approaches to the devices design. In the case of micro-mechatronic
devices, it is clear that classic constructions based on the assembly from dis-
crete parts cannot satisfy desired requirements. The single solutions are
compact structures using micro-system technology or other precise produc-
tion methods. Such structures can be used as compliant mechanisms in
micro-positioning devices, actuators for optoelectronics, micro-surgery, etc.
A large group of MEMS devices represents micro-actuators and sensors (e.g.
force/torque, pressure, speed, acceleration, flow rate. . . ) [1].

In solving such mechanical structures specific approaches to design, kine-
matic, force and flexural analysis are used. Nevertheless, there is still a need
to improve the quality of the mathematical description of micro-electro-
mechanical systems (MEMS) based on the comparison of results from or-
dinary (linear) models and measured values, where the error on one elastic
element is in the range of 2–16% [2].

In general, the performance characteristics of compliant mechanisms are
relatively linear, but this follows from small motions of the devices. On the
other side, the nonlinear behavior of compliant structures can be indicated,
when the high precision positioning with high payload is required. The
common precise positioning device usually used a stepper motor with the
positional encoder the no-backlash high ratio reduction gear and the ball
screw, but the study [3] shows that the positioning errors from the ball screw
are present. Consequently that the motion reduction compliant mechanism
can be utilized as a device those potential positional errors can minimize.
The solution to such a device leads to a complex optimization problem. The
movement of such devices is usually in the range of 10% of maximum
device dimensions, on the other side, for minimizing positioning error to e.g.
10% (from the positioning error 30 μm to 3 μm) it is required considerable
input displacement what have a direct impact to the dimensions of the whole
device. Other mentioned problem could be the device’s robustness and its
dynamical properties. For instance, the thickness of the flexure hinges, if is
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this thickness bigger the mechanisms is stiffer, but the arisen stress is higher,
on the other side very thin hinges can lead to the unwanted oscillations,
because mathematical expression of the compliant mechanism is mass-spring
(damping) system.

In the design procedure are two main variables that should be calcu-
lated, the displacement as a dependence of acting load (or rather dependence
between input and output movement) and maximum arisen stress as a depen-
dence of maximum expected displacement and acting load. The calculations
should be in the validity of Hooke’s law and the area of elastic deformation.
The dependence between displacement and acting load is expressed as

u = CF → F = Ku, (1)

where u is deflection vector (6× 1), C is compliance matrix (6× 6) what is
inverse matrix of stiffness K, K = |bfC−1.

The maximum arisen stress in flexure hinge can be expressed as [4]

σmax =
1

wt

{
KtaKxFxux +

6Ktb

t

[
(lFKyFy +KθzMz)uy+

+ (lFKyMz +KθzMzθz)
]}

,

(2)

where Kta and Ktb are theoretical stress concentration factors, where Kta is
connected with axial load, and Ktb is connected with bending. Parameters
w and t are joint width and thickness (respectively), lF is distance between
joint and actuation place of force Fy , Kij are elements of stiffness matrix
(i –– displacement/rotation in direction, j –– acting load) and ux, uy, θz are
displacements and rotation in particular direction (also components of the
vector u). Theoretical stress concentration factors are given on the base of
experimental measurements or by approximate theoretical calculation.

In this work, the results from the design and analysis of motion reduction
device are compared with measurements on the test bed. There are evaluated
displacements of a device in two states when the mechanism works without
load, and with a load. It turns out that in the case of a mechanism under
load; its behavior is non-linear, which must be avoided by a suitable control
system. Acknowledgment

This work was supported by the Slovak Research and Development
Agency under the contract No.: APVV-14-0076 – “MEMS structures based
on load cell”, contract No.: APVV-18-0117 and by the national scientific
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Fig. 1. a) Dependence of output displacement for proposed motion reduction device,
b) Distribution of stress (von Mises) in proposed mechanism, c) 3D printed physical
model of the proposed device
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The residual method for solving ill-posed system of
algebraic inequalities and linear programming problems

with approximate data
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We consider the following problem [1]:

‖u‖1 =

n∑

j=1

|uj| =
n∑

j=1

uj → inf, u ∈ Ū = {u ∈ Rn : u � 0, D̄u � h̄} �= ∅.

(1)
Suppose that, instead of the exact data D̄ = {d̄ij} ∈ Rm×n, h̄ = [h̄1, h̄2, . . .,
h̄m]T ∈ Rm, we know their approximations D̃ = {d̃ij} ∈ Rm×n, h̃ =

[h̃1, h̃2, . . . , h̃m]T ∈ Rm such that
∣∣∣d̃ij − d̄ij

∣∣∣ � δij ,
∣∣∣h̃i − h̄i

∣∣∣ � δi, i = 1,m, j = 1, n, (2)

δij , δi are the given pointwise levels of the input-data errors. Instead of
individual system D̃u � h̃ we consider the aggregate systems

Du � h, D ∈ D, H ∈ H, (3)

where [2]

D = {D = {dij} ∈ Rm×n :
∣∣∣d̃ij − dij

∣∣∣ � δij , i = 1,m, j = 1, n},

H = {h = [h1, h2, . . . , hm]T ∈ Rm :
∣∣∣h̃i − hi

∣∣∣ � δi, i = 1,m}.

Consider the problem

‖u‖1 =

n∑

j=1

|uj | =
n∑

j=1

uj → inf,

u ∈ U1 = {u ∈ Rn : u � 0, Du � h, ∃D ∈ D, ∃h ∈ H},
(4)

where U1 is set of the admissible solutions of systems (3).
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Theorem 1. The problem (4) equals to the next problem

‖u‖1 =

n∑

j=1

|uj | =
n∑

j=1

uj → inf,

u ∈ U2 = {u ∈ Rn : u � 0, D̃u− h̃ � Δu+ δ},
(5)

where Δ = {Δij} ∈ Rm×n, δ = [δ1, δ2, . . . , δm]T ∈ Rm.

When we realize the residual method numerically, we do not have to
obtain the exact solutions of (5). It is sufficient to find

uε ∈ U2, ‖uq‖1 � inf
u∈U2

‖u‖1 + ε, ε � 0. (6)

Theorem 2. Suppose Ū �= ∅, then

ρ(uε, U∗) = inf
u∈U∗

‖uε − u‖2 =

= inf
u∈U∗

⎛

⎝
n∑

j=1

|uεj − u∗j |2
⎞

⎠
1/2

= O (‖Δ‖∞ + ‖δ‖∞ + ε)
(7)

where uε satisfies the inequality (6) and U∗={u∈ Ū : ‖u‖1= inf
u∈Ū

‖u‖1} �= ∅

is set of solution of problem (1).

The estimate (7) shows that pointwise method (6) allows one to obtain
the approximate solutions of (1) with the same accuracy as the error in the
definition of D̄ and h̄.

The problem of finding of the normal solutions of the linear programming
problems can be reduced to the problem (1).
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Two integrable models of rolling balls over a sphere

Božidar Jovanović1, Borislav Gajić1
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In this talk we consider the nonholonomic problem of rolling without
slipping and twisting of a n-dimensional ball over a fixed (n−1)-dimensional
sphere. This is a SO(n)-Chaplygin system with an invariant measure that
reduces to the tangent bundle TSn−1. We describe two classes of inertia
operators, such that corresponding systems are integrable. In the first class
we use the Chaplygin reducing multiplier method, while in the second class
we obtain integrability directly — without Hamiltonization.
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On resonances in Hamiltonian systems with three degrees
of freedom

Alexander A. Karabanov1, Albert D.Morozov2
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We address the dynamics of near-integrable Hamiltonian systems with
three degrees of freedom in extended vicinities of unperturbed resonance in-
variant Liouville tori. Depending on the number of inde- pendent resonance
conditions satisfied by the unperturbed torus, the resonances are subdivided
into single and double. Normal forms and resonance averages of the isoen-
ergetically reduced system are produced for both cases. It is shown that
the average dynamics in the zone of a single resonance is 3-dimensional,
fully integrable and reduced to a family of pendulum-like motions under a
conservative force on the circle. A degeneracy with respect to one of slow
variables is revealed and linked to the potential diffusive instability of the
initial system. The average dynamics in the zone of a double resonance is
4-dimensional, reduced to motions under a conservative force on the two-
torus and generically non-integrable. The methods of differential topology
are applied to analysis of equilibrium states and phase foliations of the av-
erage system. The results are illustrated by a simple model combining the
non-degeneracy and non-integrability of the reduced system.

This work has been partially supported by the Russian Foundation for Ba-
sic Research under grants no. 18-01-00306 and by the Ministry of Education
and Science of the Russian Federation (project no. 1.3287.2017/PCh).
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The dynamics of a spherical robot of the combined type
by periodic control actions
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University
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In recent studies of nonholonomic systems the problems of moving a
Chaplygin sleigh and Chaplygin top with small periodic control actions
are considered. The results confirm the possibility of constant accelera-
tion (speedup) of the wheeled vehicle due to the periodic change in the mass
distribution [1,2], as well as acceleration of the Chaplygin top with the help
of an internal rotor [3].

This paper presents the results of the study of the dynamics of a real
spherical combined-type robot in case of controlling using small periodic
oscillations. The spherical robot sets in motion by controlled moving the
position of center of mass and generating variable gyrostatic momentum
[4–6].

We demonstrate how to use small periodic controls for stabilization of
spherical robot during motion. The results of numerical simulation are ob-
tained for various initial conditions and control parameters that ensure a
change in the position of the center of mass and a variation of gyrostatic
momentum.

The problem of the motion of a spherical robot of the combined type
on a surface that performs flat periodic oscillations is also considered. The
results of numerical simulation are obtained for different initial conditions,
control actions and parameters of oscillations. Possible modes of motion of
spherical robot on oscillating plane are discussed.

The work funded by the Russian Science Foundation under grant 18-71-
00096.
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Experimental evaluation of mobile wheeled robot control
using artificial neural network

Yury L.Karavaev1, Kirill S. Efremov1, Ivan S. Zvonarev1
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Control systems of mobile robot are often developed using fuzzy regu-
lators or neural networks [1–5]. The use of artificial intelligence methods
is justified especially for complex systems, which include mobile wheeled
robots. In the framework of this work, the task of planning the trajectory
of movement for a mobile wheeled robot using artificial neural networks is
considered. The formation of the trajectory from the initial position to the
final one is based on the solution of the problem of control optimization
using Euler’s elastica. Two types of elasticas inflection and non-inflection
are calculated by the following formulas [6]:

a) inflection: uE (s) =
8kK

σ
cn(4K

(
pE +

s

σ

)
; k);

b) non-inflection: uE (s) = ±4K

σ
dn
(
2K
(
pE +

s

σ

)
; k
)
,

where k is the parameter that determines the forms of elasticity; σ is the
length of the full period of elasticity; pE is the starting point of elasticity, K
is the elliptic integral of the first kind, cn() and dn() are the elliptic Jacobi
functions. Based on a mathematical model we prepared a training dataset
of basic trajectories in the form of Euler’s elasticas relate various possible
positions of a mobile robot taking into account different orientations.

The proposed control system consists of two artificial neural networks
(ANN) (Fig. 1). ANN1 processes data from different sensors and forms a
circle describing the obstacle (the coordinates of the center and radius) and
the time of the possible motion. ANN2 calculates the coefficients needed
to calculate the elastic. The basic ANN is a multilayer perceptron trained
by backpropagation algorithm. To implement the ANN, the Python language
with the TensorFlow machine-learning library was used.

The geometric features of the controlled mobile robot were taken into
account when forming the training samples. To check the performance of
this control system (CS), several experiments were implemented to form a
trajectory: with an obstacle on the trained data, without an obstacle on the
trained data and for a non-standard situation (for which the ANN was not
trained).

The paper presents the results of testing the proposed neural network
controller in practice.
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Fig. 1. Structure of neural network controller
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Numerical research of flow of profiles system near screen
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The work offers a method to calculate the flow of profiles system based
on an integrated ratio of current function for infinite area [1]. At the same
time the numerical method — a method of boundary elements (MBE) with
constant elements is used. Influence of the screen is simulated by means of
the profiles located specularly relative to the screen.

This work considers the direct boundary-value problem, which has the
system of profiles (the main wing, the slat, the flap, etc.) and their mutual
arrangement against motionless screen . The paper stud-ies the problem of
continuous flow of a profile system near the screen by a stream of ideal
incompressible liquid [2]. The contours of profiles are supposed to be closed
and smooth. The flow of a single profile, profile with the slat, with the slat
and the flap near the screen are investigated in detail. Thereby the flow of a
system of two, four and six profiles is calculated.

The dependence of lifting capacity of a profile at approach to the screen
on its thickness is investigated; influence of an angle of rota-tion of the flap
on lifting capacity coefficient and also influence of the screen on various
aerodynamic features of the system of profiles.
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Non-rough cycles in a model of two delayed oscillators

Alexandra A.Kashchenko

P.G. Demidov Yaroslavl State University, Yaroslavl, Russia

Consider system of two delay differential equations

u̇0 + u0 = λF (u0(t− T )) + γ1λ
−α(u1 − u0),

u̇1 + u1 = λF (u1(t− T )) + γ1λ
−α(u0 − u1).

(1)

Here u0 and u1 are scalar functions, delay time T , coefficient λ, and coupling
parameter γ1 are positive, parameter α belongs to interval (1/2, 1), F (u)
is some nonlinear function. We assume that function F (u) is bounded,
piecewise smooth and compactly supported, i.e., there exists a positive p
such that

F (u) =

{
f(u), |u| ≤ p,

0, |u| > p,
(2)

where function f(u) satisfies conditions

uf(u) > 0 for all 0 < |u| < p, f(−p) = f(0) = f(p),

f ′(p) �= 0, f ′(−p) �= 0.
(3)

System (1) with this type of nonlinearity simulates two coupled oscillators
with delayed feedback. Such oscillators can be applied to manufacture D-
class amplifiers and sonars, and to control ultrasonic welding [1].

We assume that parameter λ is sufficiently large

λ � 1. (4)

Using asymptotic methods, we investigate [2] existence of relaxation pe-
riodic solutions of system (1) under conditions (2), (3), (4). For this purpose
we construct a special set in the phase space of initial system. Then we build
asymptotics of all solutions of the given system with initial conditions from
this set. Using this asymptotics, we construct a special finite-dimensional
mapping. Dynamics of this mapping describes the dynamics of the initial
problem in general: non-rough cycles of this mapping correspond to non-
rough inhomogeneous relaxation periodic asymptotic (by the discrepancy)
solutions of initial infinite-dimensional system. It is proved that all solutions
of constructed mapping are non-rough cycles of period two. As a result,
we obtain that the initial system has a two-parameter family of non-rough
inhomogeneous relaxation periodic asymptotic (by the discrepancy) solutions
with amplitude O(λ) and period T0(λ) = (1 + o(1)) lnλ as λ → +∞.
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Asymptotic of spatially inhomogeneous solutions of the
system with a space deviation

Ilia S. Kashchenko

P.G. Demidov Yaroslavl State University, Yaroslavl, Russia

Consider parabolic equation with deviation of spatial variable

∂u

∂t
+ u = ε

∂2u

∂x2
+K sinu(t, x− h) (1)

and periodic boundary conditions

u(t, x+ 2π) ≡ u(t, x). (2)

Here 0 < ε � 1, K ∈ R. Value h describes the deviation of the spatial
variable (rotation of the field at an angle of h). Let h be close to rationally
proportional to 2π number, i.e. for some coprime m1 and m2

h = 2π
m1

m2
+ μ,

where μ is another small parameter: 0 < μ � 1.
Let u0 be uniform equilibrium of (1), (2): u0 = K sinu0. The problem is

to investigate the behavior of solutions (1), (2) for t ≥ 0 in some sufficiently
small (but fixed) neighborhood of u0.

Denote p = K cosu0. If |p| < 1 then the behavior of solutions with
initial conditions from some neighborhood of u0 is trivial: all of them tends
to u0. If |p| > 1 then almost all solutions from some neighborhood of u0

leave it. The dynamics is nonlocal. Other two cases are critical.
The most interesting case occurs when the parameter p is close to −1.

So for some small ν we have p = −1− ν.
Thus, the problem contains three small parameters at once: ε, μ and ν.

Their ratio is very important and has a significant impact on the results and
the course of research.

In the critical case under consideration, the real parts of the infinite set
of roots of the characteristic equation tend to zero as ε, μ, ν → 0. Thus, we
can say that the realizable critical case has infinite dimension.

The main result of the work is that the original problem in the case
under study is reduced to a so-called. the quasinormal form – a family of
nonlinear equations independent of small parameters whose solutions give the

80



main parts of the asymptotic approximation of the solutions of the original
problem that is uniform over all t ≥ 0 [1, 2].

The author were supported by the Russian Foundation for Basic Research
(project no. 18-01-00672).
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Generalization of the Joukowski-Chaplygin solution of the
plane hydrodynamic problem in eccentric ring

Anastasia O. Kazakova

Chuvash State University, Cheboksary, Russia

In 1906 N. E. Joukowski and S. A. Chaplygin have considered a friction
of a lubricating layer between the spike and the bearing from a mathemat-
ical point of view [1]. By its hydrodynamic essence, this is the problem of
research of a viscous fluid between two eccentrically arranged circular cylin-
ders, one of which (the spike, inner cylinder) rotates with a constant angular
velocity and the second one (the bearing, outer cylinder) is motionless. In
this work we will consider the rotation of both inner and outer cylinders.
Such a statement has many important applications in other fields too. Math-
ematical model of the problem is described by boundary value problem for
biharmonic equation in eccentric ring. For solving it we will use bipolar
coordinates in the same way as N. E. Joukowski and S.A. Chaplygin. The
Reynolds number is assumed to be small and the equations of motion are
solved in the linear Stokes approximation.

Fig. 1 shows the cross section of the domain between two circular
cylinders. The radii of the outer and inner circles are ρ1 and ρ0, respectively,
and the distance between their centers is Δx.

Fig. 1. Bipolar coordinates ξM = ∠MFA − ∠MF ′A, ηM = ln (F ′M/FM) and
lines η = const

In order for the center of the outer circle to lie at the origin of the Carte-
sian coordinate system, we will use the bipolar coordinates which are some-
what different from those used in [1]. The relation between the considered
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bipolar coordinates and the Cartesian coordinates expresses by formulas:

η =
1

2
ln

(x− c+ a)2 + y2

(x− c− a)2 + y2
, ξ = arctg

x− c+ a

y
−arctg

x− c− a

y
, (1)

where 2a is the distance between the poles F and F ′ and c = −a cth η1.
The problem reduces to determination of the biharmonic stream function

Ψ inside the domain between two circles: the outer circle η = η1 of radius
ρ1 and the inner circle η = η0 of radius ρ0, the distance between their centers
is equal to Δx. From (1) the equalities follow:

a =

√
(Δx2 − ρ21 − ρ20)

2 − 4ρ21ρ
2
0

2Δx
,

η1 = ln

√
a2 + ρ21 + a

ρ1
, η0 = ln

√
a2 + ρ20 + a

ρ0
.

(2)

In [1] it was shown that the function Ψ can be represented as the linear
combination of biharmonic functions. Using simple algebraic transformations
we bring it to the following form:

Ψ = N (η) +M (η) / (ch η − cos ξ) , N(η) = Aη − F ch 2η −G sh 2η

M(η) = B sh η + C ch η + Eη sh η + F ch η ch 2η +G ch η sh 2η.
(3)

The boundary conditions of the problem: the inner and the outer cylinders
rotate with angular velocities ω0 and ω1, respectively; then on their surfaces
the velocities are equal to U0 = ω0ρ0 and U1 = ω1ρ1. The stream function
Ψ is constant on both surfaces. Hence there follow the conditions for the
functions M (η) and N (η) which enter into (3):

M(ηk) = 0,
dN

dη

∣∣∣∣
η=ηk

= 0,
dM

dη

∣∣∣∣
η=ηk

= −Uka, k = 0, 1. (4)

From the conditions (4) we can determine coefficients of the function Ψ.
Thus, we obtain the solution of the generalized Joukowski–Chaplygin prob-
lem for the stream function Ψ(ξ, η).

The report also provides a detailed analysis of the structure of viscous
fluid flow. The flow structure is determined by the presence of stagnation
points at which the flow velocity vanishes. They can be located on the x
axis. For example, in Fig. 2, in which we have reproduced the streamlines
for ρ1 = 1, ρ0 = 0.3, Δx = 0.35, ω0 = 1, ω1 = −4, there are two stagnation
points K0 and K1. A vortex is formed in the neighborhood of these points.

The reported study was funded by RFBR according to the research project
No. 18-31-00220.
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Fig. 2. Diagram of fluid flow between two cylinders rotating in opposite directions
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Numerical solution of the boundary value problems for the
Poisson’s equation in the plane domain

Anastasia O. Kazakova1, Evgenia A.Mikishanina1

1 Chuvash State University, Cheboksary, Russia

The generalization of the numerical boundary element method [1] for the
Poisson’s equation with a known right-hand side in a plane domain D

Δu(x, y) = f(x, y), (x, y) ∈ D (1)

is given. Two boundary value problems with the following boundary condi-
tions are considered:

1) Dirichlet condition:

u|∂D = g0(s), s ∈ ∂D, (2)

2) Neumann condition:

∂u

∂n

∣∣∣∣
∂D

= g1(s), s ∈ ∂D, (3)

where ∂
∂n is the normal derivative, g0(s), g1(s) are given real functions, Δ

is the Laplace operator.
If the function f (x, y) is a polyharmonic function of some order n − 1

it follows from equation (1) that u is the polyharmonic function of n order
and satisfies the equation

Δnu = 0. (4)

In particular, the piecewise polynomial approximation of the function f in
the domain D can be applied. As n − 1 missing boundary conditions for
equation (4), it is easy to obtain the following equations [2]:

Δu = f (x, y) , Δ2u = Δf (x, y) , . . . , Δn−1u = Δn−2f (x, y) .
(5)

The polyharmonic equation (4) reduces to a system of linear integral equa-
tions [3]:

εuj +

n−j−1∑

p=0

∮

∂D

uj+p Hpds−
n−j−1∑

p=0

∮

∂D

qj+p Gpds = 0,

(
j = 0, n− 1

)
, ε = 0.5

(6)
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where

uj = Δju, qj =
∂uj

∂n
,

Gp =
1

2π

r2p

4p(p !)
2

(
ln

1

r
+

p∑

m=1

1

m

)
, Hp =

∂Gp

∂n
.

(7)

To construct a numerical solution using the linear boundary element method,
the boundary of the domain D is replaced by a polygon C with N sides (ele-
ments), the boundary conditions are satisfied at the middle (control) points of
the elements. So the system (6) is written as a system of nN linear algebraic
equations with respect to 2nN discrete values of functions uj (Zk) and their
normal derivatives qj (Zk) = nk · Δuj (Zk) at control points Zk. To solve
this system, it is necessary to set nN values of these functions, they are
determined by the boundary conditions (2) and (5), or (3) and (5) depending
on the type of the boundary value problem. By solving the system, the value
of the function u(z) at an arbitrary interior point of the domain D can be
determined from the equality (6) when ε = 1.

The effectiveness of the method is confirmed by comparison of numerical
results and analytical solutions on test examples, one of which is presented
below.

Example 1. To compare the numerical solution with the analytical func-
tion, we consider a polyharmonic function u(x, y) = x3

(
x2 − 5y2

)
, which

is a solution to the equation

Δu = 10x3 − 30xy2. (8)

We solve equation (8) numerically in a circular ring with inner and outer
radii a = 4, b = 5, if the Dirichlet condition is given.

Using the method described above the equation (8) is reduced to the bi-
harmonic equation and then we obtain a system of linear equations relatively
unknown values of functions q0, q1. On Fig. 1 the results of the analytical
and numerical (N = 50) solutions on the contour

x = 4.5 coss, y = 4.5 sin s, s ∈ [0, 2π) ,

are presented.
The reported study was funded by RFBR according to the research project

No. 18-31-00220.
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Fig. 1. Analytical (solid line) and numerical (points) solutions of the Dirichlet prob-
lem for equation (8)
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Nonlinear stability analysis of relative equilibriums of a
solid carrying a movable point mass in the central

gravitational field

Olga V.Kholostova

Moscow Aviation Institute (National Research University), Moscow, Russia

We consider the motion of a solid body of mass M in the central New-
tonian gravitational field. Let the body contain a point of mass m moving
along one of the principal central axes of inertia of the body (Oy) according
to a given law s = s(t). The orbit of the center of mass of the system ”body-
point” is assumed to be elliptic with an arbitrary eccentricity e (0 < e < 1).

Earlier [1], for an arbitrary law of motion of a point mass in the body,
differential equations of motion of this system (of the Euler - Poisson equa-
tion type) were obtained. For the mentioned straight-line law, the existence
of planar motions of a body was shown, for which its principal axis of inertia
Oz is perpendicular to the orbit plane. These motionss are described by the
equations

d

dt
[(Jz + μs2)(ϕ̇+ ν̇)] +

3k

R3
C

(Jx − Jy + μs2) sinϕ cosϕ = 0,

ν̇ =
n

(1− e2)3/2
(1 + e cos ν)2,

k

R3
C

=
n2

(1− e2)3
(1 + e cos ν)3, μ =

mM

m+M
.

Here Jx, Jy, Jz are the principal central moments of inertia of the body, ν is
the true anomaly, n the average motion of the center of mass of the system
in orbit.

If the relation s = s(ν) when passing to ν instead of t is given by

Jz + μy2(ν) = [Jz + μy2(0)]

(
1 + e

1 + e cos ν

)2

, (1)

then in the system ”body-point”, there are relative equilibria ϕ = 0 and
ϕ = π/2,

Equation (1) with regard to expression (2) can be rewritten in the form
of Hamiltonian canonical equations with the Hamiltonian function

H =
1

2
p2ϕ +

1

2

(
(s− 3)(1 + e cos ν)

(1 + e)2
+

3

1 + e cos ν

)
sin2 ϕ,

s = 3
Jx − Jy + μy2(0)

Jz + μy2(0)
(−3 � s � 3),

(2)

in which a new independent variable ν is introduced.
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A linear stability analysis of the particular solutions ϕ = ϕ0, pϕ = 0 and
ϕ0 = 0 or π/2 of the system with Hamiltonian (2) was carried out in [1].

In this paper, we perform a nonlinear stability analysis of these relative
equilibria in the linearly stable regions and on the boundary curves of para-
metric resonance regions. For this purpose, using the algorithm developed in
[2], the area-preserving mapping generated by the motions of the considered
Hamiltonian system has been normalized over a time interval equal to the
period 2π. Then, using this function, the form of the normalized Hamiltonian
in terms up to the fourth degree inclusive with respect to perturbations has
been restored, and the known conditions for stability and instability of non-
linear time-periodic one-degree-of-freedom Hamiltonian systems have been
examined.

A non-resonant case, fourth order resonance cases, and first and second
order resonance cases (corresponding to the boundaries of parametric reso-
nance regions) were distinguished. It is revealed that in non-resonant cases
the conditions of the Arnold - Moser theorem are always satisfied (and there
are no degeneracy cases), therefore the relative equilibria considered are sta-
ble. On the fourth-order resonance curves, the stability of these solutions
always holds. At the boundaries there is an alternation of stable and unstable
curves.

The report was supported by RFBR (project no. 17-01-00123).

References

[1] Markeev A.P. Dynamics of a Satellite Carrying a Point Mass Moving about It
// Mech. Solids. 2015, vol. 50, no. 6, pp. 603-614.

[2] Markeyev A.P. A method for analytically representing area-preserving map-
pings // J. Appl. Math. Mech. 2014, vol. 78, no. 5, pp. 435-444.

89



Topological Analysis and Absolute Dynamics
of the Nonholonomic Rolling of a Rubber Wheel

with Sharp Edges

Alexander A. Kilin1, Elena N. Pivovarova2

1 Moscow Institute of Physics and Technology, Dolgoprudny, Russia
2 Udmurt State University, Izhevsk, Russia

We consider the dynamics of a body formed by truncating a ball by two
parallel planes at an equal distance from its geometric center (Fig. 1), and
call it a wheel. The sections formed by the intersection of the ball with the
planes are two flat segments on it (with sharp edges).

Fig. 1. A schematic model of a moving wheel in cases where the point of contact
with the supporting plane lies on the edge of disk d−, on the spherical part, and on
the edge of disk d+ (from left to right).

We assume that the center of mass of the wheel is (in the general case)
displaced along its symmetry axis. To describe the dynamics of the wheel,
we use two models of motion: the ball’s model featuring a rolling wheel
with its spherical part in contact with the supporting plane, and the model of
a rolling disk with its sharp edge in contact with the supporting plane. We
also assume that the wheel rolls without slipping on the horizontal plane at
the point of contact and without rotation of the body about the vertical.

The equations of motion of the system have the form [1, 2]

Ĩω̇ = Ĩω × ω −mr × (ω × ṙ)−mg(γ × r) + λ0γ,

γ̇ = γ × ω,
(1)

where γ is the unit vector of the vertical, ω is the angular velocity vector
of the wheel, m is the mass of the wheel, Ĩ = I + m(r, r) · E − mr ·
rT is the tensor of inertia of the body relative to the contact point, I =
diag(I1, I1, I3) is the main tensor of inertia of the wheel, E is the unit
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matrix, and g is the free-fall acceleration. The multiplier λ0 corresponds to
the no-spin constraint and the radius vector of the contact point r depends
on the model of motion.

The aim of the work is to carry out a topological analysis of the partial
solutions of the system (in particular, to construct a bifurcation diagram) and
to analyze the dynamics of the wheel in a fixed reference frame depending
on the system parameters.

In this work we show that the parameter space (a0, ξ) can be divided
into three regions, each of which has its own number of bifurcations of
fixed points (degenerate solutions) of the system and hence its own type of
bifurcation diagram on the plane (k, h) of first integrals:

I. the region of existence of three degenerate solutions — two in the disk
models and one on the boundary of change of the models of the ball
and the disk d+ ;

II. the region of existence of one degenerate solution in the model of the
disk d−;

III. the region of existence of two degenerate solutions in the disk models
(a0 = 0).

All three types of bifurcation diagram are shown in Fig. 2.

Fig. 2. Types of bifurcation diagrams plotted for constant values of the angle ξ = π/3
for different values of the displacement of the center of mass. The region of possible
motions of the system is colored grey

We investigate the trajectories of the contact point on the surface of the
wheel and make a classification of its motion depending on the presence
or absence of transitions between the situations where the contact point lies
on the spherical part of the wheel and on its edge. We also analyze the
trajectories of the contact point on the plane and obtain conditions for their
boundedness.

91



In particular, we show that for almost all permanent rotations the trajec-
tory of motion of the wheel in a fixed reference frame is a circle. Exceptions
are the cases of a balanced ball or a balanced thin disk, for which, with
θ0 = π/2 (where θ0 is the angle of inclination of the wheel’s symmetry axis
related to the vertical), the trajectory of motion is a straight line.

For the other rotations, we introduce the notion of rotation number ν as
a ratio of rotation frequencies ωψ and ωθ and formulate the following

Proposition. Depending on the value of the rotation number, two types
of trajectories of the contact point are possible for the resonant trajectories:

• ν ∈ Z: in this case, an unbounded drift of the trajectory of the contact
point to infinity takes place.

• ν ∈ Q \Z: in this case, the trajectories of motion are closed periodic
curves.

Some examples of the trajectories of the wheel on a plane xy are shown
in Fig. 3.

Fig. 3. Trajectories of motion of the wheel on the plane xy which correspond to
different resonances for the case a0 = 0.04, k = 0.3

This work is supported by the RFBR grants nos. 18-08-00999-a, 18-38-
00344 mol a and is carried out at MIPT under project 5–100 for state support
for leading universities of the Russian Federation.
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Appearance of working memory mechanism in
self-organizing liquid state machine

Mikhail V. Kiselev

Chuvash State University, Cheboksary, Russia

Nowadays, usage of artificial neural networks in almost all spheres of
everyday life is one of the most noticeable features of modern IT tech-
nologies. Neural network theory and applications have now several growth
points. The most actively developed research directions are spiking neural
networks (SNN) [1], convolutional and deep learning networks. Since SNNs
themselves are complex non-linear dynamic systems, their specific applica-
tion area is processing of dynamic signals such as video streams, sensory
data in robotics or signals from technological sensors.

The most common form of SNN architecture used for solution of this
kind of problems is the so called liquid state machine (LSM) [2], a com-
putational model consisting of the two parts, chaotic SNN (a “liquid”) and
read-out mechanism interpreting activity of the SNN. SNN included in LSM
is chaotic in the sense that it has no predefined structure such as layers.
Instead, its connectivity is random –– presence of synaptic connection be-
tween two given neurons, weight of this connection and its delay are random
variables obeying certain statistical distributions. Input data streams to be
processed by LSM should be represented in the form of spike sequences
(spike is a short pulse of the constant amplitude and negligible duration used
for communication between neurons in SNN). The network responds to the
external stimulation by activity of its neurons which may also depend on
recent history of the input signal. The read-out mechanism uses measure of
activity of the neurons as predictors for solution of various supervised learn-
ing problems. For this purpose, it can utilize any appropriate data mining
method - logistic regression, support vector machine, anything else.

The crucial feature of SNN as a part of LSM is memory. In order to
recognize a spatio-temporal pattern taking a significant interval on the time
axis, SNN should store in memory the context of its beginning until its end
is presented. It is why the question which SNN parameters provide it with
long and stable memory is so important.

In the original version of LSM which is used now by the majority of
researchers, neurons are not plastic — the synaptic plasticity is switched
off. However, there are many reasons to believe that generalization of LSM
where neurons are made plastic could gain significant advantages. In case
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of appropriately selected synaptic plasticity rule, network self-organization
could eliminate its circuits performing senseless or trivial operations and
facilitate growth of neural ensembles producing informative predictors. This
consideration has led us to concept of self-organizing LSM (SOLSM) —
LSM with plastic neurons.

However, formation of the memory mechanism in evolving chaotic SNN
is very poorly explored process. Some of the earlier works of the author were
devoted to this subject [3, 4] (but for the structured SNNs). At present, the
majority of working memory models in SNN is based on short-term plastic-
ity sometimes combined with the concept of attractors, meta-stable states of
the network preserving information in time [5], or effect of polychronization
of neuronal groups [6]. However these approaches either cannot be used for
chaotic networks or require too complicated two-component synaptic plas-
ticity model (while traditional LSM does not use synaptic plasticity at all).
It determined the goal of our project –– finding chaotic SNN configuration
making possible formation of working memory mechanism on the basis of
conventional long-term synaptic plasticity.

In this research we explored chaotic SNN consisting of leaky integrate-
and-fire neurons with plastic synapses. A homeostatic generalization of
classic STDP plasticity model was used [7] (to avoid instability of SNN
dynamics due to positive feedback inherent to STDP). Network memory
ability was measured on simple simulated Poissonian external signals. LSM
task was to determine set of input neurons emitting spikes with increased
frequency but with significant time lag after returning their frequency to the
base line (when another set of input neurons becomes more active).

Several SNN connectivity configurations have been tested. For example:

• “Neural gas”. Homogenous network with equal probability of synap-
tic connection, weight distribution and synaptic delay distribution for
every pair of neurons.

• “Bottleneck”. Similar to “neural gas” but with only small part of
neurons connected with input neurons.

• “Sphere”. Connections are chaotic but obey the “small world” dis-
tribution law — the neurons correspond to points of sphere and the
connection probability for close neurons is much higher than for dis-
tant ones.

It was found that memory mechanism with satisfactory characteristics is
formed in the third case only. The optimum connectivity parameters for this
case were determined using genetic algorithm. Estimation of classification
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efficiency of the best found SNN configuration shows its potential usability
in real world problems.
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A dynamic study of screwless fish-like robot
with internal rotor
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Many floating robotic vehicles move by rotating of propeller screws.
Also mechanisms which copy organisms moving are popular. There are
methods of moving in water by jet reaction drive, moving by transforming
of body shape, moving by action of internal mechanisms. Using moving
by action of internal mechanisms all driving elements are in body and don’t
associate with fluid. As a result construction of these robots are simple
because contact movable elements with water is missing. First theoretical
researches were presented at the beginning 2000 years [1, 2].

There are some papers which describe different self-propulsion bodies
in a fluid [3–10]. Experimental work with fish-like robots using internal
mechanisms for moving describe in [11, 12].

The paper describes control problem of the screwless overwater fish-like
mobile robot, driven by an internal rotating rotor. The robot has a rigid case
which doesn’t be transform while moving.

Mathematical model of robot movement was developed. The equations
describing the dynamic of moving of screwless fish-like robot taking into
account circulation and viscous friction forces were written. Circulation
is calculated according to the Kutta-Chaplygin condition. Coefficients of
fluid resistance depend on moving mode and they were determined from
experiments.

The robot is a hollow object with dimensions of 340 × 134 mm. The
height of the robot is 80 mm (see Fig. 1). The rotor with the motor is fixed
inside the body. The motor is a gear-motor Pololu with encoder. Also inside
the robot the battery and control board with STM32F303K8 microcontroller
are placed. To control the motor, a DC motor driver VNH3SP30 is used.

To confirm theoretical moving model five series of experimental re-
searches with different control actions were carried out in circular pool.
The rotor changed rotational direction at regular intervals. The interval were
different for each series of experimental researches, but rotational velocity
and acceleration were maximal and limit oneself to possibilities of the motor.
Results of experimental researches were compared with modelling results.
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Fig. 1. Screwless fish-like robot with internal rotor

This work is supported by the RFBR under grant 18-08-00995-a.
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Chaplygin parabolic pendulum problem: Liouville
equivalence invariants

Ivan F. Kobtsev

Moscow State University, Moscow, Russia

The parabolic pendulum problem was formulated by S. A. Chaplygin.
In [1] possible motions of this mechanical system were studied and first
integrals were found.

The formulation of the problem: massive particle moves on the surface
P given by equation y2

a+b + z2

b = 2x + b, a, b > 0. The force m−→g =
(−mg, 0, 0) is applied to the particle; friction equals zero. The main goal is
to describe phase topology of this mechanical system. This is Hamiltonian
system with two degrees of freedom, it has two first integrals: total enegry
H and additional integral F . The system is defined on symplectic manifold
M4 = T ∗P with canonical symplectic structure, dimension of M4 equals 4.

In [2] the theory of Hamiltonian systems two degrees of freedom is
constructed. According to this theory we will describe the phase topology
in terms of Fomenko–Zieschang invariants. Namely, it is a way to describe
topology of isoenergetic manifold Q3

h =
{
x ∈ M4 : H = h

}
. Classical way

of topological analysis in this case is rather complicated due to the explicit
evaluating bifurcation diagram by differentiation. Nevertheless there exists
coordinate system (v, w), in which the equations of motion take the next
form:

v̇ = ± 4

w − v

√
R(v), ẇ = ± 4

w − v

√
R(w),

where

R(z) = 2
(a− z)z

(z + b)

(
αz2 − βz + f

)
, α =

m2g

8
, β =

m2g

8
(a+ b) +

mh

4
,

H = h, F = f are fixed values of first integrals; (v, w) are parabolic
coordinates such that

x =
v + w − b− a

2
, y2 =

(a+ b)(a− v)(w − a)

a
, z2 =

b

a
vw

This representation makes possible to obtain integral manifolds and their
bifurcations in algebraical way. The new method of topological analysis is
described in [3].
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One remarkable fact is that the type of integral manifolds depends on
g. So, if g > 0, integral manifolds are compact and homeomorphic to the
union of 2-dimensional tori. If g < 0, integral manifolds are homeomorfic
to the union of 2-dimensional cylinders R

1 × S1. Their bifurcations are
non-compact too (atoms with non-compact foliations are denoted by bar in
fig. 1; all notations are the same as in [2]).

Full list of Fomenko–Zieschang invariants obtained in this problem is
given in fig. 1 (in case g > 0) and fig. 2 (in case g < 0).

Fig. 1. Isoenergetic invariants in Chaplygin problem, g > 0

Fig. 2. Isoenergetic invariants in Chaplygin problem, g < 0
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The flow around a thin profile with perforated contour
lines

Alexander Ja. Kornilov1, Alevtina G. Kulagina1, Ildus Ju. Jusupov1,
Dmitry V. Bobin1

1 Chuvash State University, Cheboksary, Russia

The study of the flow around permeable plates and profiles is of great
theoretical and practical interest. The most important contribu-tion to this
branch of mechanics was made by A.I. Nekrasov [2] (“Obtekanie profilja
Zhukovskogo pri nalichii na nem istochnika i stoka” [The flow around
Zhukovski profile with a source and a sink], 1947), G. P. Tumashev and
M.G.Nuzhin (“Obratnye kraevye zadachi i ih prilozhenija” [Inverse bound-
ary value problems and their applications], 1955), Yu. F. Orlov (“O glis-
sirovanii plastiny v prisutstvii svjazannogo vihrja po poverhnosti ideal’noj
zhidkosti konechnoj glubiny” [On the gliding of a plate in the presence
of a coupled vortex over the surface of an ideal fluid of finite depth],
1967), A. V.Galanin (“O vlijanii osobennostej na pod’emnuju silu profilja
v ogranichennom potoke zhidkosti” [On the influence of features on the
lifting force of the profile in a limited fluid flow], 1974).

In [1], the simulation results of the flow around a plate with special
characteristics on contours are presented, the thickness of the profile being
neglected. The paper presents the results of solving the problem of flowing
around a thin profile with perforations on the contours. The perforations
are modeled using a “sink-and source” hydrodynamic method. The formulas
were obtained and a numerical experiment was carried out to calculate the
main force vector of the flow pressure on the profile, as well as the profile
moment relative to the leading edge.

The results:
1. Permeable holes in any of their locations on the profile and in any set

of them reduce the lifting force.
2. The maximum positive effect for the moment of pressure forces can

be achieved when one hole is located on the back side of the profile (closer
to the rear edge) and perforate half of the lower edge of the profile closer to
the axis of rotation.
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About realization of Jordan-Kronecker invariants of Lie
algebras

Ivan K. Kozlov

Faculty of Mathematics and Mechanics,
M. V. Lomonosov Moscow State University, Moscow, Russia

Two Poisson brackets A and B on a finite-dimensional manifold M are
called compatible if their sum A + B is also a Poisson bracket. Since each
Poisson bracket is given by a Poisson bivector, two Poisson brackets on M
define a pair of skew-symmetric forms in each cotangent space T ∗

pM . The
canonical form for a pair of skew-symmetric bilinear forms is given by the
well-known Jordan-Kronecker theorem (see e.g. [1]).

Jordan-Kronecker theorem. For any two skew-symmetric bilinear
forms A,B on a finite-dimensional vector space V over an algebraically
closed field K there exists a basis of V such that the matrices of A and B
are block-diagonal:

A =

⎛

⎜⎝
A1

. . .
An

⎞

⎟⎠ , B =

⎛

⎜⎝
B1

. . .
Bn

⎞

⎟⎠

where each pair of corresponding blocks Ai and Bi is one of the following:

• the Jordan block with eigenvalue λ ∈ K ∪ {∞}:

Ai =

(
0 Jλ,k

−JT
λ,k 0

)
, Bi =

(
0 Ek

−Ek 0

)
.

Here Jλ,k and Ek are the k × k Jordan block and identity matrix
respectively. Here the jordan ∞-block for A and B is the Jordan
0-block for B and A.

• the Kronecker block:

Ai =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1 0
. . .

. . .
1 0

−1

0
. . .
. . . −1

0

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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Bi =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0 1
. . .

. . .
0 1

0

−1
. . .
. . . 0

−1

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here each Kronecker block is a (2ki + 1) × (2ki + 1) block, where
ki ≥ 0.

Jordan-Kronecker invariants of a pair of compatible Poisson brackets
are:

1) the number of distinct eigenvalues λi of the Jordan blocks,

2) the number and sizes of the Jordan blocks for each eigenvalue λi,

3) the number and sizes of the Kronecker blocks.

We are interested in the Jordan-Kronecker invariants for the argument
shift pencil on Lie coalgebras. For any finite-dimensional Lie algebra g

there exist natural compatible Poisson brackets on the dual space g∗:

• the linear (Lie-Poisson bracket) bracket defined by the formula

{f, g}(x) := 〈x, [df |x, dg|x]〉,

• and the so-called “bracket with a frozen argument”

{f, g}a(x) := 〈a, [df |x, dg|x]〉,

for any fixed a ∈ g∗.

Jordan-Kronecker invariants of a Lie algebra g are the JK invariants of
{, } and {, }a , for a generic pair (x, a) ∈ g∗ × g∗.

In the talk we would partially answer the following question from [2]
(see also [3]):

Question: What JK invariants can be realised by a suitable Lie algebra?
In particular, we would

1) answer that question completely in the Jordan and Kronecker cases,
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2) describe some differential-geometric obstructions for realization of JK
invariants in the general case.

The obstructions arise from the canonical form of compatible non-degenerate
Poisson bracket described in [4].

Acknowledgments. This work was supported by the program “Leading
Scientific Schools” (grant no. NSh-6399.2018.1, Agreement No. 075-02-
2018-867)
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Mechanical systems with hyperbolic chaotic attractors
based on Froude pendulums

Sergey P. Kuznetsov1,2, Vyacheslav P. Kruglov1, Yulia V. Sedova1

1 Saratov Branch Kotelnikov Institute of Radioengineering and Electronics of RAS,
Saratov, Russia

2 Udmurt State University, Izhevsk, Russia

We introduce two mechanical models with uniformly hyperbolic Smale –
Williams attractor based on Froude pendulums. Froude pendulum is a well-
known example of mechanical self-oscillator [1].

The first model with Smale –Williams attractor consists of two Froude
pendulums placed on a common shaft rotating at a constant angular ve-
locity [2]. Pendulums undergo alternate braking by periodic application of
frictional forces. The pendulums are weakly connected with each other by
viscous friction. The dynamical equations of the system are:

ẍ− [a− d(t)− bẋ2]ẋ+ sinx = μ+ ε(ẏ − ẋ),
ÿ − [a− d(t+ T/2)− bẏ2]ẏ + sin y = μ+ ε(ẋ− ẏ),

d(t) =

⎧
⎨

⎩

0, t < T0,
D, T0 < t < T/2,
0, T/2 < t < T,

d(t+ T ) = d(t),

(1)

where x and y are the angular coordinates of two pendulums. Parameters
are assigned as follows:

a = 0.36, b = 0.16, μ = 0.087, ε = 0.0003,
D = 0.8, T = 250, T0 = T/4.

(2)

The parameters are chosen in such way that the basic frequency of the devel-
oped self-oscillatory mode is half of the frequency of the small oscillations.
Therefore, when the brake of the pendulum is switched off, it will begin to
swing in a resonant manner due to the action of the second harmonic from
the another pendulum. As a result, when the second pendulum approaches
the sustained self-oscillatory state, its phase appears to be doubled in com-
parison with the initial phase of the first pendulum. This corresponds to
the expanding circle map (Bernoulli map) for the phase. As a volume con-
traction takes place along the remaining directions in the state space of the
system, this will correspond to occurrence of the Smale –Williams solenoid
as an attractor of the Poincaré map.
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The second model is a single Froude pendulum placed on a shaft rotating
at a constant angular velocity with delayed feedback and braking by periodic
application of frictional force. Delayed feedback can be implemented using
spring with one end contacting pendulum with viscous friction and another
free. The equation is:

ẍ− [a− d(t)− bẋ2]ẋ+ sinx = μ+ ε[ẋ(t− τ)− ẋ],

d(t) =

⎧
⎨

⎩

0, t < T0,
D, T0 < t < T/2,
0, T/2 < t < T.

d(t+ T ) = d(t).
(3)

Parameters are assigned the same as (2) with τ = T/2. The explanation
of emergence of Smale –Williams solenoid in system (3) is similar to (1),
but phase doubling occurs due to second harmonics of the signal transmitted
through delayed feedback. Smale –Williams solenoid appears embedded in
the infinite-dimensional phase space of the Poincaré map.

Models (1) and (3) were analyzed numerically. Lyapunov exponents
of attractors were evaluated with largest close to Lyapunov exponent of
Bernoulli mapping. The hyperbolicity of the chaotic attractors was tested
numerically with the help of criterion based on analysis of angles of in-
tersection of stable and unstable invariant subspaces of small perturbation
vectors. Absence of tangencies between these subspaces was verified.

Fig. 1. Phase iteration diagrams of Poincaré maps of systems (1) (left) and (3) (right).
Diagrams roughly correspond to Bernoulli map.

The development of the concept of the systems (1) and (3), the construc-
tion of a mathematical models and the verification of hyperbolicity were
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carried out with the support of the grant of Russian Science Foundation No.
15-12-20035. Numerical calculations demonstrating a hyperbolic attractor
of system (3) were carried out with the support of the grant of Russian
Science Foundation No. 17-12-01008.
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Dynamics of phases and chaos in lattices of locally coupled
conservative or dissipative oscillators

Vyacheslav P. Kruglov1, Sergey P. Kuznetsov1,2

1 Saratov Branch Kotelnikov Institute of Radioengineering and Electronics of RAS,
Saratov, Russia

2 Udmurt State University, Izhevsk, Russia

We discuss three models of oscillator lattices with dynamics close to the
model of phase lattice with nearest-neighbor coupling suggested by Topaj
and Pikovsky [1]:

ψ̇k = Δk + ε sinψk+1 + ε sinψk−1 − 2ε sinψk, (1)

where ψk is a phase shift between nearest-neighboring oscillators, k runs
from 1 to N − 1, Δk are frequency shifts, ε is coupling constant. Boundary
conditions are ψ0 = ψN = 0.

System (1) manifests a quasi-Hamiltonian dynamics for small couplings
ε at linear frequency distribution (Δk = 1 for all k). The average phase
volume at small ε is conserved [1] due to reversibility – a symmetry of
phase space under some special change of variables R : {ψk} → {ψ′

k}
called involution (R2 is identical transformation) together with time reversal
transformation T : t → −t. For Topaj – Pikovsky model (1) the involution
is ψk → π − ψN−k.

Topaj – Pikovsky model (1) describes only dynamics of phases and does
not account variations of amplitudes of oscillations. It is interesting to deepen
the model by introducing amplitude-phase equations. We turn first to a
conservative lattice [2, 3] of oscillators with Hamiltonian function

H (I,Φ) =
N∑

k

ωkIk +
1

2
β

N∑

k

I2k−

− ε

N∑

k

√
Ik+1Ik (Ik+1 − Ik) sin (φk+1 − φk)−

− ε

N∑

k

√
Ik−1Ik (Ik−1 − Ik) sin (φk−1 − φk) .

(2)

The Hamiltonian function (2) describes e.g. oscillations in tilted optical
lattice [2, 3],

√
Ik and φk are amplitudes and phases of spatial modes
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√
Ik exp(iφk − ikπ/2) of nonlinear Schrödinger equation with tilted po-

tential [2, 3], nearest-neighbor coupling at linear distribution of frequencies
(ωk+1 − ωk = 1). The equations of motion for populations of wells (or
intensities of oscillations) Ik and phases φk are:

İk =− ∂H
∂φk

= −2ε
√
Ik+1Ik (Ik+1 − Ik) cos (φk+1 − φk)−

− 2ε
√
Ik−1Ik (Ik−1 − Ik) cos (φk−1 − φk) ,

φ̇k =
∂H
∂Ik

= ωk + βIk + ε
(
3
√
Ik+1Ik −

√
I3k+1/Ik

)
sin (φk+1 − φk)+

+ ε
(
3
√
Ik−1Ik −

√
I3k−1/Ik

)
sin (φk−1 − φk) .

(3)
There are two known constants of motion for equations (3): Hamilto-

nian function H (I,Φ) (2) and total population of the lattice
∑N

k Ik = N/2.
The dynamics is equivariant in respect to arbitrary phase shift because equa-
tions (3) depend on phase differences ψk = φk+1 − φk.

The dynamics of equations (3) is reversible, with involution R : Ik →
IN−k, φk+1 − φk → π − (φN−k−1 − φN−k). If we set populations of every
potential well equal to each other (Ik ≡ 1/2) they remain constant, and
equations of motions become equivalent to the Topaj – Pikovsky model (1)
on an invariant torus. This invariant torus is unstable [2] to perturbations of
populations Ik .

We also introduce two dissipative models close to Topaj – Pikovsky
system. The first one is an array of locally coupled rotators with inertia:

mψ̈k + ψ̇k = Δk + ε sinψk+1 + ε sinψk−1 − 2ε sinψk, (4)

where m is mass of rotators. Equations (4) are not reversible because of
presence of the second derivatives, but if m = 0 they reduce exactly to the
Topaj – Pikovsky model. If masses are small, equations (4) demonstrate
transient dynamics very close to Topaj – Pikovsky model. Asymptotically
all of the trajectories condense on a small number of attractors.

Phase equations (1) can be derived also for a chain of locally coupled van
der Pol equations under some special assumptions. We consider truncated
coupled van der Pol oscillator equations for small perturbations of constant
amplitudes:

ρ̇k = −λρk + ε cosψk+1 − ε cosψk−1,

ψ̇k = Δk + ε (1 + ρk+1) sinψk+1 + ε (1− ρk−1) sinψk−1 − 2ε sinψk.
(5)
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The observed destruction of quasi-conservative dynamics in (5) looks similar
to that in way with the situation describing the incorporation of dissipation
in nonholonomic mechanical systems [4].

The work was supported by the grant of Russian Science Foundation
No. 15-12-20035.
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[3] Thommen Q., Garreau J.C., Zehnlé V. Classical chaos with Bose-Einstein con-
densates in tilted optical lattices // Physical review letters, 2003, vol. 91, no.
21, pp. 210405.

[4] Bizyaev I. A., Borisov A. V., Kuznetsov S. P. The Chaplygin sleigh with friction
moving due to periodic oscillations of an internal mass // Nonlinear Dynamics,
2018, vol. 95, no. 1, pp. 699–714.

111



Modelling and dynamics of rigid body systems with 3D
frictional and impact contacts

Grzegorz Kudra1, Jan Awrejcewicz1

1 Lodz University of Technology, Lodz, Poland

The work concerns problems of modelling and investigations of dynam-
ics of different mechanical systems composed of one or more rigid bodies
with spatial frictional and impact contacts. There are developed and tested
special simplified models of contact allowing for fast and reliable numerical
simulations and bifurcation dynamics analysis of specific dynamical systems
taking into account influence shape and size of the contact. The bodies are
assumed to be quasi-rigid, i.e. in their global motion they are treated as
rigid with constant shape but assumed to be locally deformable in the sense
that shape and size of the contact area is variable. Among the examples of
mechanical systems, where assumption of point contact and one-dimensional
friction model does not allow to obtain reliable simulations, one can mention
billiard ball, dynamics of the balls in a bearing, wobblestone or polishing
machine.

Discretization of space in the vicinity of the contact area and application
of specific numerical methods allows for exact simulation results but also
requires relatively high computational costs. Instead we propose special re-
duced models based on assumption of fully developed sliding and classical
Coulomb friction law valid at each element of the contact [1]. The integral
expressions are replaced by special approximations being generalizations and
extensions of Padé approximations and models exhibited in the earlier works
[2]. Related friction models for finite contact zone with translational and
rotational relative motion of the contacting bodies are presented and investi-
gated experimentally in the work [3].

The developed approximate models of friction forces are then connected
with compliant models of impact based on generalized Hertz theory. The
proposed models are tested during simulations of the following examples of
mechanical systems: a) rattleback also known as wobblestone or Celtic stone
(see the work [1]); b) full ellipsoid of revolution rolling and sliding over the
plane and horizontal surface; c) billiard ball; d) double spatial pendulum
with links connected by the use of Cardan-Hooke joints, equipped with rigid
obstacle. In addition, bifurcation dynamics of the Celtic stone placed on
oscillation table is analysed.
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Traveling wave solutions of some mathematical models for
description of propagation pulses in optical fibers

Nikolay A. Kudryashov

National Research Nuclear University (MEPHI),
Russian Federation, Moscow, Kashirskoe shosse, 31

At the present one of the important theoretical and technological tasks
is the solution of the problem for description of propagation pulses in an
optical fiber. We know a sufficiently large number of mathematical models
to describe the behavior of optical solitons in a fiber, but there is still no
complete solution to the problem, because first of all this task is connected
with the need to create new types of optical fiber. As a rule, a nonlinear
Schrödinger equation with different types of nonlinearity is used to theoret-
ically describe the propagation of pulses in an optical fiber. Let us mention
here the Kaup-Newell equation, the nonlinear Schrödinger equation with
quadratic-cubic and with anti-cubic nonlinearity, the Radhakrishan-Kundu-
Laksmanan equation, the Triki-Biswas equation, the Chen-Lee-Liu equation,
the Gerdjikov-Ivanov equation, the Kundu-Mikhherjee-Naskar equation and
the Biswas-Arched equation. As a rule the Cauchy problem for this equation
is not solved by the inverse scattering transform and we study these equa-
tions using the traveling wave reduction. We show that there are two first
integrals for the system of equations corresponding to real and imaginary
parts of these equations. These first integrals are used to obtain the nonlin-
ear first-order differential equation. The general solution of the first-order
ordinary differential equation is found via the Weierstrass and Jacobi elliptic
functions [1-5]. Periodic and solitary waves of these equations in the form
of the traveling reuction are presented and illustrated.
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On the stability of discrete vortex structures
in two-layer rotating fluid and in homogeneous fluid

Leonid G. Kurakin1,2, Irina V.Ostrovskaya1
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Vladikavkaz, Russia

A two-layer quasigeostrophic model is considered. The stability analysis
of the stationary rotation of a system of N identical point vortices lying
uniformly on a circle of radius R in one of layers is presented. The vortices
have identical intensity and length scale is γ−1 > 0. The problem has
three parameters: N , γR and β, where β is the ratio of the fluid layers
thicknesses. The stability of the stationary rotation is interpreted as orbital
stability. The instability of the stationary rotation is instability of system
reduced equilibrium. The quadratic part of the Hamiltonian and eigenvalues
of the linearization matrix are studied.

The parameters space (N, γR, β) is divided on three parts: A is the
domain of stability in an exact nonlinear setting, B is the linear stability
domain, where the stability problem requires the nonlinear analysis, and C
is the instability domain. The case A takes place for N = 2, 3, 4 for all
possible values of parameters γR and β. In the case of N = 5 we have
two domains: A and B. In the case N = 6 part B is curve, which divides
the space of parameters (γR, β) into the domains: A and C. In the case of
N = 7 there are all three domains: A, B, and C. The instability domain
C takes place always if N = 2n ≥ 8. In the case of N = 2� + 1 ≥ 9
there are two domains: B and C. The results of research are presented in
two versions: for parameter β and parameter α, where α is the difference
between layers thicknesses.

The stability problem for N + 1 vortices is considered for a two-layer
quasigeostrophic model and model of homogeneous fluid. In the case of
two-layer fluid the quadratic part of the Hamiltonian and eigenvalues of
the linearization matrix are studied for the vortex structure consisting of
a central vortex of arbitrary intensity Γ and two/three identical peripheral
vortexes (N = 2, 3). The identical vortexes, each having a unit intensity,
are uniformly distributed over a circle of radius R in a single layer. The
central vortex lies either in the same or in another layer. Some new results
on stability of N + 1 vortices are obtained for Kirchhoff’s model.

The stability of the Thomson vortex N -gon is also studied in the case of
the model of the Bessel vortices for any N ≥ 2.
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A number of statements about the stability is obtained for the systems
of interacting particles with the general Hamiltonian depending only on dis-
tances between the particles.

The main results are published in the papers [1–4].
The work was supported by the Ministry of Education and Science of the

Russian Federation, Southern Federal University (Projects No. 1.5169.2017/8.9).
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On stability of orbit and invariant set of Thomson’s vortex
polygon in two-fluid plasma
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The motion of the system of N point vortices with identical intensity Γ
in the Alfven model of two-fluid plasma is described by the equations with
Hamiltonian [1]

H = − Γ

4π

∑

1≤j<k≤N

W (|zj − zk|), W (ξ) = ln ξ + cK0(ξ).

Here, zk = qk + ipk, (qk, pk) are Cartesian coordinates of the k-th vortex,
K0 is a modified Bessel function, parameter c > 0.

The stability of the stationary rotation of N identical vortices disposed
uniformly on a circle with radius R is studied for N = 2, . . . , 5. The
analytical analysis of eigenvalues of the linearization matrix and the quadratic
part of Hamiltonian is given. Two different definitions of the stability are
used. Instability is interpreted as instability of equilibrium of the system
reduced.

The conclusions of the orbital stability were partly published in [2], where
the results of the papers [1, 3, 4] are used. In this case the parameter space
(N,R, c) of the problem is divided into three parts: the domain of stability
in an exact nonlinear problem setting, the linear stability domain, where
the additional nonlinear analysis is needed, and the domain of exponential
instability.

Also, the stability of three-dimensional invariant set founded by the orbits
of continuous family of stationary rotations is studied. The stability theory
of invariant multiplicities for the systems with a few integrals [5] is applied.
As a result, for N = 2, . . . , 5 the new statements about the stability in
the domains, where the nonlinear analysis at research of orbital stability is
needed, are received.

The work was carried out within the framework of the basic part of the
state task of the Ministry of education and science of Russian Federation
(1.5169.2017/8.9).
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Semi-invariant form of equilibrium stability criteria
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The systems of differential equations with one/two cosymmetries are
considered [1]. The ordinary object for such systems is one-dimensional
(two-dimensional) continuous family of equilibria. The stability spectrum
changes along this family, but it necessarily contains zero. We consider the
nondegeneracy condition, thus the boundary equilibria separate the family
on linearly stable and instable areas. Stability of the boundary equilibria
depends on nonlinear terms of the system.

The stability problem for the systems with one or two cosymmetries is
studied in [2, 3]. The general problem to apply the stability criteria is to
compute coefficients of the model system. It is especially difficult if the
system has a large dimension while a number of critical variables may be
small. The coefficients calculation method is proposed in [4].

In this work the expressions for the known stability criteria are proposed
in a convenient form to calculate. The explicit formulas of the coefficients
of the model system are given in semi-invariant form. They are expressed
using the root vectors of the linear matrix and its conjugate matrix.

The work was supported by the Ministry of Education and Science of the
Russian Federation, Southern Federal University (Projects No. 1.5169.2017/8.9).
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Application of boundary element techniques to the solution
of tasks of hydrodynamics

Valentina V.Kuritsyina1, Tatiana V.Mitrofanova1, Tatiana N. Smirnova1

1 Chuvash State University, Cheboksary, Russia

The method of discretization of the boundary element tecniques (BET) is
used, in which the boundary of the region is replaced by a polyline (the links
are called elements), at the links of which the sought function is approxi-
mated by a special shape. Constant elements [1] were chosen as working
tools. BET is based on the transformation of the differential equation in par-
tial derivatives into an integral equation, the numerical solution of which de-
termines the boundary values. Generalized Green’s relations, obtained in [2]
to the real and imaginary parts of the function W (z) = U(z)+ iV (z)(which
is an analytical function in the domainDz; Cz — is the boundary of domain
Dz), take the form:

ε(z)U(z) +

∫

Cz

U(t)Gn(z, t)ds(t) =

∫

Cz

Un(t)G(z, t)ds(t) + ReF (z),

ε(z)V (z) +

∫

Cz

V (t)Gn(z, t)ds(t) =

∫

Cz

Vn(t)G(z, t)ds(t) + ImF (z),

F (z) =

m∑

k=0

Bkz
k +

n∑

k=1

Ak

(z − a)
k
+

D

2 (z − c)
,

where the function F (z) takes into account all the features of the function
W (z) — the poles inside the domain, at the boundary and at an infinitely
remote point.
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Mathematical modeling of plasma dynamics for processes
in capillary discharges

Victor V. Kuzenov1,2, Sergei V. Ryzhkov1
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The statement of the problem is presented and numerical modeling of
plasma-gas-dynamic processes in the capillary discharge plume and other
applications is performed as the development of Ref. [1–14]. In the de-
veloped model, plasma dynamic processes in a capillary discharge are de-
termined by the intensity, duration of plasma formation processes in the
capillary discharge channel, and thermodynamic parameters in the surround-
ing gaseous medium. A vector equation is formulated that describes the
vorticity

−→
Ω in a gas flow, which is affected by an external magnetic field.

This equation (a generalization of Son’s equation [15]) ∂
−→
Ω
∂t +

(−→
V · ∇

)−→
Ω =

1
ρ2∇ρ ×

(
∇P − 1

c

[−→
j ×−→

H
])

+ vΔ
−→
Ω , allows us to introduce the follow-

ing condition for the emergence of a toroidal vortex in the presence of an
external magnetic field:

tvort ≈
Ωcharρcharε

2

∣∣∣Pchar ∓ H2
char
8π

∣∣∣
, < min

(
tconv ≈

Lchar
Vchar

, tdiff ≈
r20
ν

)

where ε, r0 are the nucleus radius and the large radius of the self-induced
toroidal vortex with circulation Γ. Comparison of the results of calculations
in a single plume of a capillary discharge with known and available experi-
mental data was made. Their satisfactory compliance is noted. Calculations
of pulsed jets arising from adjacent channels of a high-current capillary dis-
charge were carried out. The spatial distribution of temperature and pressure
of pulsed jets of several capillary discharge channels is presented. Cal-
culations of pulsed jets were performed taking into account the additional
magnetic field. Magnetic pressure has the most noticeable effect on the
heated axial part of a pulsed jet (T > 20 kK).

Free shear flows (jets, traces, mixing layers, shear layers) are often used
in technical devices. One of the important features of shear flows is insta-
bility (one of the main causes of hydrodynamic instability is the shear of
velocity (in this case the longitudinal flow, i.e. the presence of points of
inflection in its profile), which leads to the formation of large-scale vortex
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structures. That is, the motion of the pulsed jet is exponentially unstable in
relation to any wave disturbance in the presence of tangential discontinuity.
The growth rate depends on the wave number k = 2π/λ (λ is the wave-
length) and equal to γ = kU (U is the velocity shift). We note that the
elimination of the velocity discontinuity (which is observed for t � 144 μs)
leads to the stabilization of the flow in relation to small-scale disturbances.
This research is supported by the Russian Ministry of Science and Higher
Education (Project No. 13.5240.2017/8.9) and Bauman Moscow State Tech-
nical University Target Program for 2018-2020.

Fig. 1. Spatial temperature distribution in a pulsed jet at the time t = 58.2 μs: 1 ––
acceleration vortex area
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Complex dynamics in generalizations
of the Chaplygin sleigh

Sergey P. Kuznetsov

Udmurt State University, Izhevsk, Russia

Chaplygin sleigh is one of the simplest paradigmatic systems for non-
holonomic mechanics. The model can be thought of as a platform that can
move on a surface in such a way that one of the points of the sleigh allows
motion only in a fixed direction relative to the platform, which can be in-
terpreted as a skate installed at this point, or a knife edge, along which the
movement is allowed.

The report is devoted to review of some generalizations of the classi-
cal problem of the Chaplygin sleigh, where complex dynamics are possible,
including chaos. Particularly, we will discuss the Chaplygin sleigh under
the action of impulse kicks [1], the motion with periodic switching of the
nonholonomic constraint location [2], the self-acceleration of the Chaplygin
sleigh in the presence of an oscillating mass attached to them [3], the random
walk of the Chaplygin sleigh on the plane due to presence of a strange at-
tractor in equations describing the dynamics of the generalized momenta [4].

One of the interesting problems is the movement of the Chaplygin sleigh
in a potential field that forms a two-dimensional potential well on a plane,
assuming that the potential force is supplied at the mass center. In the case
of sliding down the slope and then moving up by inertia, the sleigh tends to
orient itself so that the knife edge is at the back. After the sleigh begins to
slide in opposite direction, a turn occurs so that the knife edge appears to be
back again. With a relatively small initial energy, the resulting motions turn
out to be quasi-periodic, while with sufficiently large energies the chaotic
motions become typical. The system is described by a set of equations

mu̇ = maω2 − UX cosφ− UY sinφ,

(J +ma2)ω̇ = −maωu+ UX sinφ− UY cosφ,

φ̇ = ω,

Ẋ = u cosφ− aω sinφ,

Ẏ = u sinφ+ aω cosφ,

where u is velocity of the sleigh along the knife edge, ω is angular velocity,
X and Y are the center mass coordinates in the laboratory frame, ϕ is
the rotation angle of the sleigh, the function U(X,Y ) defines the form of

124



Fig. 1. Poincaré sections for the motion of Chaplygin sleigh at W = 1.5 (top) and
W = 2 (bottom) defined by the condition u = 0. Normalizing factor for the angular
velocity is ωm =

√
wW/(J +ma2)

the potential well, m is mass of the sleigh, J is moment of inertia about
the center of mass, a is distance between the knife edge and the center of
mass. The center of mass is considered to be placed on the straight line
that is continuation of the knife edge. The system has an integral of energy
W = 1

2m(u2+a2ω2)+ 1
2Jω

2+U(X,Y ) = const. Considering the dynamics
of the system we can treat the energy W simply as an additional parameter of
the system. If the potential well is symmetric with respect to rotations, then
the problem is reduced to a set of four equations. Taking into account the
energy integral, the Poincaré map turns out to be two-dimensional. Figure 1
shows the numerically obtained pictures of the phase space of the system
in the Poincaré section determined by the condition u = 0, when the sleigh
moves in a potential field U = 1

2 (X
2 + Y 2) in the case of m = 1, a = 1,

J +ma2 = 10, for two values of the energy. Observe that with growth of
the energy the islands of regular motions decrease in size while the chaotic
see occupies larger and larger area.
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Some lattice models with hyperbolic chaotic attractors

Sergey P. Kuznetsov
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The Smale –Williams attractor belongs to the category of uniformly hy-
perbolic attractors, whose theory was developed in the 1960s – 1970s by
efforts of Smale, Anosov, Sinai, and other mathematicians [1]. Hyperbolic
attractors are characterized by roughness or structural stability. In the con-
text of physical or technical objects this property implies insensitivity of the
dynamic behavior to small variations in parameters, manufacturing imperfec-
tions, interferences, etc., which may be significant for possible applications.

This report presents examples of systems in the form of one-dimensional
lattices, in which patterns of spatial scale distinct by an integer number of
times alternate, so that the transformation of the spatial phase over a full
cycle corresponds to an expanding circle map [2]. Due to the compres-
sion of the phase volume elements in the remaining directions of the mul-
tidimensional state space, the attractor has the form of a Smale –Williams
solenoid [1, 2].

One example is a ring system of coupled pendulums, corresponding to
a spatially discrete version of the sine-Gordon equation [3], with paramet-
ric excitation due to vertical oscillations of the suspension in the presence
of dissipation. If we assume that the frequency of oscillations of the sus-
pension periodically switches to provide alternate parametric excitation of
standing waves, which fit one or three wavelengths around the chain, then
it is possible to observe chaotic dynamics, corresponding to the Smale –
Williams solenoid type attractor. The model is described by the following
dimensionless equations

(1 + εδi)[θ̈i + (1 + a(t)) sin θi] = −γθ̇i +D(θi−1 − 2θi + θi+1),

i = 0, 1, . . . , N − 1,
(1)

with boundary conditions of periodicity θi+N = θI . Here θi is deflection
angle of the i-th pendulum, γ is dissipation parameter, D is parameter of
coupling between adjacent pendulums, εδi is relative deviation of the mass
of the i-th pendulum from the average value, the function a(t) sets the
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suspension oscillations alternately with frequencies ω1 and ω2 in the form

a(t) =

{
κ2 sinω2t, 0 � t < τ,
κ1 sinω1(t− τ), τ � t < T,

a(t) = a(t+ T ), τ = 2π
N2

ω2
, T = 2π

(
N2

ω2
+

N1

ω1

)
.

(2)

Figure 1a shows typical oscillation plots in the form of dependences of
the angular accelerations of the pendulums on time according to the results of
the numerical solution of the equations (3) for the sustained chaotic motion.

Fig. 1. (a) The oscillation plots for the chain of pendulums in the form of dependences
of the angular accelerations on time, built for a sustained chaotic mode basing on
results of numerical solution of the differential equations, where the stages of slow
and fast oscillations of the suspension are marked with color and black. (b) Diagram
of the spatial phase transformation on each one modulation period of pumping. (c)
Portrait of the attractor of the Poincaré map in projection on the plane. The number
of chain elements is N = 12, the coupling parameter is D = 1.19, the dissipation
parameter is γ = 0.12. The variation of the masses is characterized by the parameter
ε = 0.01 and a set δ = {0, 1, 1, 0,−1,−1, 0, 1, 1, 0,−1,−1}. Switches of the pump
frequencies between ω1 = 2.297 and ω2 = 3.677 take place after each N1 = 85 and
N2 = 136 periods of the oscillations of the suspension, the parameters of the pump
intensity are κ1 = κ2 = 0.6.
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Figure 1b shows a diagram illustrating the transformation of the spatial phase
of the standing waves during the pump modulation period. The spatial phase
is calculated at the moments when the pump frequency is switched from ω1

to ω2, through the instantaneous angles of deviation of the zero and third
pendulums in the chain. This diagram is the main evidence that the Smale-
Williams type attractor is implemented in the system, since it shows that one
round of the full circle of the angular variable for the pre-image corresponds
to three rounds for the image. In this case, the Smale-Williams solenoid is
an object in the state space of the Poincaré map of dimension 2N = 24. Fig.
1c shows the view of this attractor in a two-dimensional projection. The
enlarged fragment in the center makes it possible to resolve the transverse
structure of the filaments characteristic for the solenoid.

The work is supported by Russian Science Foundation, Grant No. 15-12-
20035.
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Theory of hidden oscillations
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The development of mathematics and the emergence of such directions
as the theory of absolute stability, the theory of bifurcations, the theory of
chaos, and new computational technologies made it possible to take a fresh
look at a number of well-known scientific problems and practical problems of
analyzing multidimensional dynamical systems and led to the emergence of
the theory of hidden oscillations which represents the genesis of the modern
era of Andronov’s theory of oscillations [1].

The basis for the theory of hidden oscillations become a new classifica-
tion of attractors of dynamical systems: an attractor is called hidden if its
basin of attraction does not intersect with a neighborhood of all equilibria;
otherwise, it is called a self-excited attractor [2–5].

While trivial attractors (stable equilibrium points) can be easily found
analytically or numerically, the search of periodic and chaotic attractors can
turn out to be a challenging problem (see, e.g. famous 16th Hilbert problem
on the number of coexisting periodic attractors in two-dimensional polyno-
mial systems, which was formulated in 1900 and is still unsolved, and its
generalization for multidimensional systems with chaotic attractors [6]). For
numerical localization of an attractor, one needs to choose an initial point
in the basin of attraction and observe how the trajectory, starting from this
initial point, after a transient process visualizes the attractor. Nowadays self-
excited attractors, even coexisting in the case of multistability [7], can be
revealed numerically by the integration of trajectories, started in small neigh-
bourhoods of unstable equilibria, while hidden attractors have the basins of
attraction, which are not connected with equilibria and are “hidden some-
where” in the phase space. Thus, the search and visualization of hidden
attractors in the phase space may be a challenging task.

For the engineering dynamical models the importance of identifying hid-
den attractors is related with the classical problems of determining the exact
boundaries of global stability and identifying classes of models for which the
necessary and sufficient conditions for global stability coincide. In practice,
the transition of the state of the system to a hidden attractor, caused by exter-
nal disturbances, results in undesirable modes of operation and is often the
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cause of accidents and catastrophes. The suggested classification, not only
demonstrated difficulties of fundamental problems and applied systems anal-
ysis, but also triggered the discovery of new hidden attractors in well-known
engineering and physical models (see [8–13] and others).

This lecture is based on recent surveys [14, 15] and is devoted to the-
oretical and engineering problems in which hidden attractors (their absence
or presence and disposition) play an important role: Keldysh’s problem of
nonlinear analysis of flutter suppression systems, Aizerman and Kalman con-
jectures on absolute stability of control systems, 16th Hilbert’s problem,
Sommerfeld effect, Chua circuit, phase-locked loops, drilling systems and
others.

We acknowledge support form the Leading Scientific Schools of Russia
(project NSh-2858.2018.1) and Russian Scientific Foundation (project 19-41-
02002).
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On Pauli’s theorem in Clifford algebra Rp,q
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In this article, in the Clifford algebraRp,q, we investigated Pauli’s the-
orem. An algorithm for constructing Pauli’s operator is given. It is shown
that the problem of constructing Pauli’s operator is related to the problem of
zero divisor in Clifford algebras.

Let Rp,q a real Clifford algebra dimension m = 2n (n=p+q) with a
basiseα = ei1 · · · eik , 1 � i1 < . . . < ik � n,where the multi-indexα =
i1 . . . ik runs through all subsets of the set 1, . . . , n, the set of which is
denoted byΓn. Let e0 = 1 unit of algebra, e1, . . . , en -generating basis
eτ = e1e2 · · · en. Product inRp.,q determined by the relation

eiej + ejei = 2δijεi, (1)

where εi = e2i = 1, i = 1, . . . , p, εi = e2i = −1, i = p+ 1, . . . , p+ q.
Algebra Rp,q is called even (odd), if n− is even (odd) number. Let

us denote by R
(k)
p,q k = 0, . . . , n vector subspaces Rp.,q strung on the basic

elements eα = ei1 · · · eiknumbered by ordered indeces of length k. Elements

of R(k)
p,q are called elements of rank k. We have [1]:

Rp,q = R{0}
p,q ⊕R(1)

p,q ⊕ . . .⊕R(n)
p,q .

Arbitrary and Clifford conjugated elements of the algebra can be written as
follows:

w =
∑

α∈Γn

xαeα =

n∑

k=0

k
w, ŵ =

∑

α∈Γn

xαêα =

n∑

k=0

(−1)
k(k+1)

2
k
w,

where xα are real number,
k
w — elements of rank k. Operations ŵ have the

following properties [2, p. 95–97]: ˆ̂w = w, (uv)̂ = v̂ · û, (u+ v)̂ = û+ v̂.
Let Rp.,q a even Clifford algebra. Consider another generating basis

{eγi}ni=1, formed by the elements of the space R
(1)
p,q :

eγi =

4∑

k=1

α
(i)
k ek, (2)
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for which the conditions are fulfilled (1). From (2) it follows that êγi =
−eγi .

Let us find Pauli’s operator T, which has an inverse T−1 and satisfies
the equations Tei = eγiT.

We will find the operator T as: T =
∑

α∈Γ4

aαeα. Basis {eα}α∈Γ4consists

of 2n elements. Element e1 commutes with half of the elements of a basis
and anticommutes with the other half of it. Denote w1 =

∑
aαeα, v1 =∑

aαeαelements Rp,q which commute with e1 and anticommute with it
respectively. We choose the coefficients aα so that the equation Te1 = eγ1T.
We have

(e1 − eγ1)w1 = (e1 + eγ1)v1 (3)

We multiply the equation (3) on the left by (e1 + eγ1

�

) = −(e1 + eγ1) and
we obtain

(e1 + eγ1)(e1 − eγ1)w1 = (e1 + eγ1)(e1 + eγ1)v1.

Expression (e1 + eγ1

�

) (e1 + eγ1) = −2ε1(1 + α
(1)
1 )e0. If a α

(1)
1 = −1, the

(e1+eγ1

�

) is a divisor of zero for (e1+eγ1), then (e1−eγ1

�

) = −(e1−eγ1)

is not a zero divisor, since (e1 − eγ1

�

) (e1 − eγ1) = −4ε1e0.

First, let us assume that α(1)
1 �= −1, then we have

v1 =
(e1 + eγ1)(e1 − eγ1)

(e1 + eγ1)
2 w1, T =

T1

(1 + α1
1)
w1, T1 = e0 + eγ1e1.

If α(1)
1 = −1,then let us multiply the equation (3) on the left by(e1 −

eγ1

�

) = −(e1 − eγ1), and we obtain

T =
e0 − eγ1e1

2ε1
v1.

The results of these studies can be formulated as a theorem.

Theorem 1. Let in a Clifford algebra Rp,q, elements of a new basis
be represented as follows from (2). Then there exists an unique (up to
multiplication by a real number) element of a Clifford algebra T, such that
eγi = TeiT

−1, i = 1, . . . , n. Operator Pauli is iterative formula T = Tn,
where

T1 = e0 ± ε1eγ1e1, Ti = Ti−1 ± εieγiTi−1ei, i = 2, 3, . . . , n,
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where εi = e2i = e2γi
, the plus sign is taken if there are no zero divisors at

the stage, minus sign if there are zero divisors at the stag.
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Analysis of bifurcations at varying boundary conditions in
a logistic equation with delay and diffusion

Dmitry S. Loginov

P.G. Demidov Yaroslavl State University, Yaroslavl, Russia

The logistic equation with delay and diffusion

∂u

∂t
= d

∂2u

∂x2
− ru(x, t− τ)(1 + u), 0 ≤ x ≤ 1 (1)

and with boundary conditions

∂u

∂x

∣∣∣∣
x=0

= 0,
∂u

∂x

∣∣∣∣
x=1

= γu

∣∣∣∣
x=1

(2)

is one of the basic models of mathematical ecology. The coefficients of
d, r and τ in (1) are positive. The boundary problem (1), (2) has a clear
biological meaning. It describes, for example, a change in population size
in the case when migration is possible through one of the borders. This
migration is determined by the magnitude of the deviation of the number
from its average value with the coefficient γ.

The paper shows that the negative values of the γ parameter expand the
range of variation of the r parameter values at which the equilibrium state
in (1), (2) is stable, and the positive γ — is narrowed.

In cases close to critical in the problem of the stability of the zero
solution, an analysis of the local dynamics of the boundary value problem
(1), (2) is given.

The proposed approach can be extended to more general boundary value
problems, including equations with the dimension of the phase variable
greater than 1.

The research was carried out with the financial support of the Russian
Foundation for Basic Research in the framework of the research project
No. 18-29-10043.
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Integrability analysis of constrained Euler equation on six
dimensional Lie algebras

Andrzej J.Maciejewski1, Maria Przybylska1

1 University of Zielona Góra, Poland

We consider several examples of Euler equations on six dimensional Lie
algebra. A linear constraints was imposed on the vector fields defining
these systems. Integrability analysis of obtained differential equations allows
to identify integrable cases which are analogous to the Suslov and Kozlov
cases. Non-integrability of several multi-parameter families of such systems
was proved.
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Dynamics of a Chaplygin sleigh with an unbalanced rotor

Ivan S.Mamaev1, Ivan A. Bizyaev2, Alexey V. Borisov2

1 M. T. Kalashnikov Izhevsk State Technical University, ul. Studencheskaya 7,
Izhevsk, 426069 Russia

2 Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi,
141700 Russia

Consider a system moving on a horizontal plane and consisting of two
bodies. One of them is the carrying body — a platform (Chaplygin sleigh)
which slides on a horizontal plane. The point P fixed on the platform cannot
slide in some direction n fixed relative to the platform:

(vP ,n) = 0, (1)

where vP is the velocity of point P . The constraint (1) can be realized by
means of the knife edge or the wheel pair, in which there is no slipping at
the points of contact of the wheels with the plane. The other body is an
unbalanced rotor. It is fixed on the platform at some point R and rotates
freely in the horizontal plane (see Fig. 1).

Fig. 1. A Chaplygin sleigh with a free rotor.

Let us introduce generalized coordinates. Let r = (x, y) be the radius
vector of point O1 in the fixed coordinate system Oxy. We specify the
orientation of the platform by angle ψ between the axes Ox and O1x1, and
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the orientation of the rotor by angle ϕ between the axis O1x1 and the radius
vector s directed from point R to the center of mass of the rotor G.

Thus, the configuration space N is

N = {(x, y, ψ, ϕ), ψ, ϕ mod 2π} ≈ R2 × T 2.

In this case, instead of the generalized velocities q̇ = (ẋ, ẏ, ψ̇, ϕ̇) it is
more convenient to parameterize the tangent space TqN using the quasi-
velocities v = (v1, v2) — the projection of the velocity of point O1 onto the
axes of the moving coordinate system O1x1x2, and ωs, ωr — the absolute
angular velocities of the Chaplygin sleigh and the rotor:

v1 = ẋ cosψ+ ẏ sinψ, v2 = −ẋ sinψ+ ẏ cosψ, ωs = ψ̇, ωr = ψ̇+ ϕ̇.
(2)

In this case, the constraint equation can be represented in the simplest form

f = v2 = 0. (3)

Equations of motion on M7 = {v1, ωs, ωr, ϕ, ψ, x, y}, which we repre-
sent as
⎡

⎣

⎛

⎝
ms +mr −mrb −mrs sinϕ
−mrb Js mrs(a cosϕ+ b sinϕ)

−mrs sinϕ mrs(a cosϕ+ b sinϕ) Jr

⎞

⎠

⎛

⎝
v1
ωs
ωr

⎞

⎠

⎤

⎦
.

=

=

⎛

⎝
ωs
(
mrsωr cosϕ+ (mra+msc)ωs

)

ωs
(
mrs(a sinϕ− b cosϕ)ωr − (mra+msc)v1

)

−ωr
(
mrs(a sinϕ− b cosϕ)ωs +mrsv1 cosϕ

)

⎞

⎠ ,

ϕ̇ = ωr − ωs,

ψ̇ = ωs, ẋ = v1 cosψ, ẏ = v1 sinψ.
(4)

The parameters of this system are contained in Table 1.
Suppose that the center of mass of the sleigh C and the point R of

attachment of the rotor lie on the axis O1x2, that is, a = 0, c = 0. In this
case, there exists an additional integral

F = msbv1 + Isωs, Is = Js −mrb
2. (5)

Consequently, the reduced system defines the flow on the two-dimensional
manifold. We examine this flow in more detail.

In this paper, the problem of the motion of a sleigh with a free rotor has
been discussed. It is shown that three types of motion can be distinguished
for an unbalanced sleigh:
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Table 1. Description of the system parameters

Parameter Description
Is, ms the mass and the moment of inertia of the sleigh
Ir, mr the mass and the moment of inertia of the rotor
(a, b) the coordinates of point R of attachment of the rotor in the

coordinate system O1x1y1
s the distance from point R to the center of mass of the rotor G
c the abscissa of the center of mass of the sleigh in the coordi-

nate system O1x1y1
Js, Jr auxiliary parameters

1) Asymptotically stable equilibrium points in which there is no rota-
tion of the rotor relative to the platform. These motion regimes are
generalizations of the motion of a usual sleigh (without a rotor).

2) The rotor undergoes periodic oscillations, and the trajectory of the
point of contact of the sleigh traces out a quasi-periodic curve on the
plane.

3) The rotor undergoes chaotic oscillations, and the trajectory of the point
of contact of the sleigh traces out an unbounded curve on the plane.

The work was supported by the RNF under grant No. 18-71-00110.
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The motion of foils in a fluid due to periodical excitations

Ivan S.Mamaev1, Evgeny V.Vetchanin2

1 Kalashnikov Izhevsk State Technical University, Izhevsk, Russia
2 Udmurt State University, Izhevsk, Russia

This paper is concerned with plane-parallel motion of smooth foil (see
Fig. 1a) and Zhukovskii foil (see Fig. 1b) is a fluid.

x
1x

2

x

y

�

rotor

� �= ( )t

O

C

x
1

x
2

x

y

�

rotor

� �= ( )v ,2 �

O

C

(a) (b)

Fig. 1. Foils considered and coordinate system: a fixed frame, Oxy, and a moving
frame, Cx1x2, attached to the foil

The motion of the smooth foil is governed by the following equations [1]:

ṗ1 = p2ω − Γv2 − μ1v1, ṗ2 = −p1ω + Γv1 − μ2v2,

Ṁ = p1v2 − p2v1 − μ3ω,
(1)

p1 = Av1 − c2ω, p2 = Bv2 + c1ω, M = −c2v1 + c1v2 + Iω + k(t),

k(t) = εk sinΩt, Γ = Γ0 + εΓ sin(Ωt+ δ).

Here v1 and v2 are the components of linear velocity vector, ω is the angular
velocity, p1 and p2 are the components of linear momentum, M is the
angular momentum, μ1, μ2 and μ3 are the drag coefficients, c1 and c2
are the components of radius vector of the center of mass of entire system,
coefficient A and B include mass of the foil with the rotor and added masses,
coefficient I includes moment of inertia of the foil with the rotor and added
moment inertial, and Ω is the angular frequency of oscillation of rotor and
circulation.

For the smooth foil we can’t determine circulation without additional as-
sumptions. Within the framework of this paper we consider that circulation
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is a periodic function of time. For the model (1) we investigate possibil-
ities of speed-up, rectilinear motion and appearance of regular and chaotic
attractors. More detailed description of results is presented in [1].

The motion of the Zhukovskii foil is governed by the following equa-
tions [2]:

ṗ1 = p2ω − a1ρfΓ(v2 − x0ω)− μ1v1|v1|,
ṗ2 = −p1ω + a2ρfΓv1 − μ2v2|v2|,

Ṁ = p1v2 − p2v1 + a2ρfΓv1Δ− μ3ω|ω|,
(2)

Here x0 is conformal center of gravity, a1, a2 and Δ are the coefficient
obtained in [3], and ρf is the density of a fluid. Other symbols have mean-
ing similar to above mentioned ones. For the Zhukovskii foil we should
determine circulation due to Kutta-Chaplygin condition. So that in this case
circulation is a function of linear velocity and angular velocity. An expres-
sion for circulation has been taken from PhD Dissertation [4]:

Γ = 2πs(1− ζc)(2v2 + βω), β = s(2 + ζc), (3)

where ζc is the parameter of the foil, and s is the scale factor.
For equations (2), three limit cycles have been found numerically. One

of these solutions corresponds to rectilinear motion, two others correspond
to the motion near circle. In the framework of the model (2), the rectilinear
motion disappears when frequency Ω increases. The computer experiments
show that strange attractors may appear in the system (2). More detailed
description of results is presented in [3].

This work is supported by the Russian Science Foundation under grant
18-71-00111.
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On periodic motions of sympathetic pendulums at
resonance in forced oscillations

Anatoly P.Markeev

Ishlinsky Institute for Problems in Mechanics, RAS, Moscow, Russia
Moscow Aviation Institute (National Research University), Moscow, Russia

Two mathematical pendulums of mass m and length � move in a uniform
gravity field. The suspension points O1 and O2 of the pendulums are located
on a fixed horizontal line L at a constant distance d = O1O2 from one
another. The pendulums are connected by a linear elastic spring of stiffness
k. The distances of the attachment points of the springs to the pendulums
from their suspension points are equal to b. In the relaxed state, the length
of the spring is equal to d. Such pendulums are called sympathetic; their
small linear oscillations are well studied [1].

The report assumes that the suspension points of the pendulums make
periodic oscillations along the straight line L:

OO1 = a cosωt, OO2 = d+ a cosωt.

Here O is a fixed point of a straight line L, a is a constant quantity, ω =√
g/� is the partial frequency of small linear oscillations of each of the

pendulums.
Assuming that the amplitude of the oscillations of the suspension points

is small, as well as the spring stiffness, the nonlinear problem of the exis-
tence and stability in the first approximation of periodic pendulum motions
with a frequency equal to the oscillation frequency of the suspension points
is solved. The formulated problem is characterized by the fact that it imple-
ments a 1: 1: 1 resonance, when the frequency of an external periodic action
on the system is equal to its two frequencies of small natural oscillations.

Let us denote by φ1 and φ2 the angles of deflection of the pendulums
from the vertical. Let q1 = 1/2(φ1 + φ2), q2 = 1/2(φ1 − φ2) be the
generalized coordinates,p1, p2 be the corresponding impulses dimensionless
with the help of the multiplierm�

√
g�, and τ = ωt be the dimensionless

time. Set

a = ε3�, kb2 = ε2mg�s, qi = εQi, pi = εPi (i = 1, 2),

where ε is a small parameter, s is a dimensionless parameter of the problem
of the order of unity. Hamiltonian function is represented by a series of
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powers ε as follows:

H = H0 + εH2 + ε4H4 + . . . ,

H0 =
1

2
(Q2

1 +Q2
2 + P 2

1 + P 2
2 ),

H2 = sin τP1 + sQ2
2 −

1

24
(Q4

1 +Q4
2)−

1

4
Q2

1Q
2
2.

Using Poincare and Lyapunov methods, and the perturbation theory of
Hamiltonian systems [2], the following results have been obtained.

There are periodic motions of three types. For the motion of the first
type (when φ1 = φ2; such motion in the considered problem always exists,
regardless of the values of the parameters ε and s) we have

q1 = −2ε cos τ +O(ε3), q2 = 0.

For small values of ε, the motion of the first type is stable in the first (linear)
approximation if 0 < s < 1/4 or s > 3/4; they are unstable in Lyapunov if
1/4 < s < 3/4.

For motions of the second type

q1 = − ε

2s
cos τ +O(ε3), q2 = ±ε

√
64s3 − 1

2s
sin τ +O(ε3).

They exist only if s > 1/4, and are stable in the first approximation.
The motions of the third type are represented as

q1 = ε(z − z3 + 8

16s
) cos τ +O(ε3), q2 = ε

z3 + 8

16s
cos τ +O(ε3),

where z is the root of a polynomial f(z, s) of the sixth degree of the form

f(z, s) = z6 − 24sz4 + 16z3 + 192s2z2 − 192s z− 1024s3 + 64.

In the plane z, s on the curve f(z, s) = 0, seven points Pj(zj , sj) have been
found with the coordinates

z1 = −2.57, s1 = 0.31; z2 = −2, s2 = 0.75;

z3 = 0.98, s3 = 0.31; z4 = −2.51, s4 = 0.50;

z5 = −2.43, s5 = 0.64; z6 = −1.19, s6 = 0.64;

z7 = −0.54, s7 = 0.50.

The values s = s1 and s = s2 are bifurcation. For s < s1, motions of the
third type do not exist, for s1 < s < s2, there are four, and for s > s2,
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two periodic motions of the third type. Only those periodic motions that
correspond to the values of z and s lying inside the segments P1P4, P5P2P6

and P7P3 of the curve f(z, s) = 0 are stable. Outside these segments,
periodic motions of the third type are unstable.

The report was supported by state contract no. AAAA-A17-117021310382-
5 and RFBR (project no. 17-01-00123) in Ishlinsky Institute for Problems in
Mechanics RAS and Moscow Aviation Institute (National Research Univer-
sity).
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Local dynamics of a pair of Hutchinson equations with
competitive and diffusion interaction

Elena A.Marushkina

P.G. Demidov Yaroslavl State University, Yaroslavl, Russia

The Hutchinson equation, first proposed in [1], is the simplest way to
account for age structure in the population dynamics problem of individuals
fighting for common food. We consider a system of two coupled Hutchinson
equations describing the dynamics of weak competitive interaction between
two populations:

Ṅ1 = r(1 −N1(t− 1) + αN2)N1 + d(N2 −N1),

Ṅ2 = r(1 −N2(t− 1) + αN1)N2 + d(N1 −N2).
(1)

Here N1(t), N2(t) are the densities of populations, r is the Malthusian
linear growth factor. The communication parameter α is responsible for
species competition, and d is the coefficient of diffusion interaction.

Assume that parameter r is close to the critical value r = π
2 + ε, and

the coupling coefficients d > 0 and α > 0 are proportional to the small
parameter 0 < ε � 1. Note that at ε = 0 in the stability spectrum of the
equilibrium state (1, 1)T of the system (1) there is a pair of purely imaginary
eigenvalues λ = ±iπ2 of multiplicity 2, which correspond to two linearly
independent eigenfunctions. In this case, this problem has a stable local
four-dimensional integral manifold.

To find a system of ordinary differential equations responsible for the
dynamics of the system (1) on this manifold, the standard replacement of the
normal form method was used (see, for example, [2–4]):

Nj(t) = 1+
√
ε(zj(τ)e

i π
2 t + z̄j(τ)e

−i π
2 t)+ εuj1(t, τ) + ε3/2uj2(t, τ) + . . . ,

(2)
where zj(τ) are the complex-valued functions of slow time τ = εt, (j =
1, 2).

On the third step of the algorithm from the conditions of solvability of
problems for uj2(t, τ) in the class of 4-periodic by t functions the following
normal form was obtained:

(
1 + i

π

2

)
z′1 = iz1 +

(1 − 3i)π

10
z1|z1|2 −

π

2
αz2 + d(z2 − z1),

(
1 + i

π

2

)
z′2 = iz2 +

(1 − 3i)π

10
z2|z2|2 −

π

2
αz1 + d(z1 − z2).

(3)
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The dynamics of system (3) is studied. In particular, the conditions under
which the homogeneous regime (z1 ≡ z2) of the problem loses stability in a
divergent and oscillatory way are found. This allows us to find out the local
dynamics of the system (1) at sufficiently small ε.

The work was supported by RFBR (project No. 18-29-10043).
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Sub-Riemannian Geometry in Image Processing and
Modelling of Human Visual System

Alexey R.Mashtakov

Ailamazyan Program Systems Institute of RAS, Pereslavl-Zalessky, Russia

The talk is devoted to usage of sub-Riemannian (SR) geometry in im-
age processing and modelling of human visual system. In recent research
in psychology of vision it was shown (J. Petitot, G. Citti, A. Sarti) that SR
geodesics appear as natural curves that model a mechanism of the primary vi-
sual cortex V1 of a human brain for completion of contours that are partially
corrupted or hidden from observation. We extend the model by including
data adaptivity via a suitable external cost in the SR metric. We show that
data-driven SR geodesics are useful in real image analysis applications and
provide a refined model of V1 that takes into account a presence of visual
stimulus.

We start from explanation of basic concepts of SR geometry and then
show how they provide brain inspired methods in computer vision. We
discuss how considering of SR structures on 2D and 3D images (or more
precisely on their lift to the extended space of positions and directions) helps
to detect some features, e.g. salient curves. We consider several particular
examples: tracking of blood vessels in planar and spherical images of human
retina, tracking of neural fibers in MRI images of human brain. Afterwards
we show how a proper choice of the external cost based on a response of
simple cells to the visual stimulus provide a model for geometrical optical
illusions.

The talk is based on joint works [1–5].
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The solution of dynamic problems of filtration
consolidation in a rectangular area and the area

representing the band, in the formulation of V.A. Florin

Evgenia A.Mikishanina

Cheboksary, Russia

The porous fully water-saturated flat region with the given coefficients of
lateral pressure ξ0, the coefficient of relative compressibility of the medium
mv , the filtration coefficient k, the density of the medium ρT is considered.
The medium is linear isotropic and obeys Hooke’s law. Filtration of water in
this environment is subject to the law of Darcy. External pressure applied to
the water-saturated medium is transferred to the water. Thus, the proposed
task below is relevant for clay soils.

The differential equation of plane filtration consolidation in the formula-
tion of V. A. Florin [1] has the form

∂H

∂t
=

1

2γm

∂Θ

∂t
+ cvΔH,

where H — the function of pressure, Θ = σ1,1 + σ2,2- the sum of the

main stresses from the external load, cv = k(1+ξ0)
2γwmv

— the coefficient of
consolidation for the plane problem, γw — the volumetric weight of water,
Δ = ∂2

∂x1
2 +

∂2

∂x2
2 — the Laplace operator. The coefficient ξ0 of side pressure

of the soil of subjects is higher, than the elasticity of the soil is higher.
Therefore, for sufficiently elastic media, the coefficient can be considered
equal to 1.

Taking into account the inertial forces that arise during non-stationary
deformation in the medium of zero shear stiffness (σi.i = σ, σi,j

i	=j
= 0 ),

the system of equations relating the stresses σ, the velocity vector v and the
displacements u will take the form [1, 2]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂σ

∂xi
+ ρT f = ρT ü,

σ̇ = ρT c
2
p (∇ · v) ,

ρT ü = ρT f + (λ+ μ)∇(∇ · u) + μΔu
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Thus, to solve the dynamic problem of consolidation theory, we can proceed
to the boundary value problem for the system of differential equations

⎧
⎪⎪⎨

⎪⎪⎩

σ̈ =
(λ+ 2μ)

ρT
Δσ + ρT c

2
p∇ · f ,

Ḣ =
1

γw
σ̇ + cvΔH.

Boundary conditions are determined by the features of the simulated
scenario and depend on the shape of the region.

The problem is solved in a rectangular region by the method of separating
variables, as well as in the region representing the band in the class of almost-
periodic functions using the generalized discrete Fourier transform [3, 4].
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Superposition method in computer simulation of
multi-agent systems and its supercomputer implementation

Alexander A. Nazarov

Chuvash State University, Cheboksary, Russia

The study is based on the works of Russian scientists Makarov V.L.,
Bakhtizina A.R. and others, in which quite a lot of attention is paid to the
construction of multi-agent systems [1]. The study proposes an approach
to efficiently allocation of the counting core of multi-agent models on the
architecture of a modern supercomputer, the use of more efficient low-level
tools, the use of inter-node interaction, and the study of the possibility of
common use of the central and graphics processor. The developed algo-
rithm and software is based on new numeri-cal algorithms and methods for
multi-agent modeling problems and is designed to produce comprehensive,
science-based estimates. The software package will realize for an intuitive
dialogue between the decision maker and the mathematical model expressed
as a system of simultaneous nonlinear equations (recursive functions and lag
varia-bles are possible) for solving which the theory of superposition of laws
distributions and methods of numerical integration with a pre-determined
degree of accuracy will be used.

Funding

The reported study was funded by RFBR and Chuvash Republic according
to the research project No. 19-410-210012.

References

[1] Application of Supercomputer Technologies for Simulation of Socio-Economic
Systems / V. V.Okrepilov, V. L.Makarov, A. R. Bakhtizin, S. N.Kuzmina // R-
Economy. 2015. Vol. 1, Iss. 2. P. 340–350.

153



Cloning of chimera states in a multiplex network of
relaxation bistable oscillators

Vladimir I. Nekorkin

Institute of Applied Physics of Russian Academy of Science

A new phenomenon of the chimera states cloning in a large two-layer
multiplex network with short-term couplings has been discovered and stud-
ied. For certain values of strength and time of multiplex interaction, in the
initially disordered layer, a state of chimera is formed with the same charac-
teristics (the same average frequency and amplitude distributions in coherent
and incoherent parts, as well as an identical phase distribution in coherent
part), as in the chimera which was set in the other layer. The mechanism of
the chimera states cloning is examined. It is shown that the cloning is not
related with synchronization, but arises from the competition of oscillations
in pairs of oscillators from different layers.
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Topological invariants for the Chaplygin-Goryachev
integrable case with non-compact Liouville foliations

Stanislav S. Nikolaienko

Lomonosov Moscow State University, Moscow Institute of Physics and Technology,
Moscow, Russia

The Chaplygin–Goryachev case of integrability [1, 2] can be considered
as a one-parameter family of Hamiltonian systems on the dual space of the
Lie algebra e(3) given (in standard coordinates si, ri) by the Hamiltonian
function

H =
1

2

(
s21 + s22 + 2s23 + r21 − r22 +

b

r23

)
, b ∈ R.

On the symplectic leaf given by r21 + r22 + r23 = a2, a > 0, and s1r1 +
s2r2 + s3r3 = 0, these systems are Liouville integrable with two degrees
of freedom. For the case b ≥ 0 their Lioville foliations were investigated
in terms of Fomenko and Fomenko–Zieschang invariants (rough molecule,
marked molecule) by O. Orel, P. Ryabov, and the author.

In the case b < 0 all the leaves of the corresponding Liouville foliations
turn out to be non-compact: regular leaves are diffeomorphic to a cylinder
S1 × R and all 3D-bifurcations on regular energy levels have the type of
a direct product [3]. To study the topology of the Chaplygin–Goryachev
systems in this case, we use an analogue of the Fomenko–Zieschang invariant
which completely classifies them on regular energy levels up to the Liouville
equivalence.
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Design features and control of a Spherical Robot of
pendulum-type

Alexey V.Nozdrin1, Yury L.Karavaev1,2,3, Sergey V. Sokolov1

1 Moscow Institute of Physics and Technology (State University), Dolgoprudny,
Moscow Region, 141701, Russian Federation

2 M. T. Kalashnikov Izhevsk State Technical University, 7 Studencheskaya str.,
Izhevsk 426069, Russian Federation

3 Center for Technologies in Robotics and Mechatronics Components, Innopolis
University

This paper is concerned with the design and control features of a spheri-
cal robot of pendulum-type, the scheme and dynamics of which are described
in studies [1, 2]. Interest in spherical robots due to their structural features,
which greatly expand the scope of their application, using fairly simple de-
sign concepts. Sealed spherical shell provides absolute protection of the
spherical robot from aggressive environmental conditions (humidity, dust,
temperature). The complete geometric symmetry of the spherical robot al-
lows to realize omnidirectional motion, which for some modifications can be
performed without additional energy costs.

Experimental studies of a spherical robot of combined type as an internal
wheeled platform with a rotor placed inside the sphere are presented in
studies [3, 4]. In this paper, we consider a spherical robot with a two-stage
internal pendulum mechanism with the possibility of additional installation of
mechanisms providing small periodic displacements of the center of mass and
small changes of the kinetic moment is considered. Consider the equations
of motion of a spherical equations of pendulum type rolling without slipping
on an inclined absolutely rough plane. Based on the equations describing the
dynamics, a control algorithm for the implementation of rectilinear motion
and rotations is developed. A prototype of a spherical robot was created
for experimental evaluation of the developed algorithms. In this paper, we
consider the design features of the prototype, including the adjustment of
regulators to ensure the specified rotational speeds of DC control motors.
For each engine, we provide a feedback in the form of two potentiometers
installed on one engine. These two precision potentiometers allow to get rid
of the “dead zone” and significantly increase the accuracy of determining the
angles of rotation of the pendulum.
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Saturation free numerical scheme for computing the flow
past a lattice of airfoils with sharp edge

Alexander G. Petrov

IPMech RAS

The Zhukovskiy –Chaplygin condition, which allows us to determine the
circulation of the flow past contour with sharp edge — this is one of the most
important achievements of S. A. Chaplygin, whose 150 birthday is celebrated
this year. This research is devoted to this problem.

We consider the flow past of a lattice of airfoils by a potential fluid flow
(Fig. 1).

Fig. 1.

The profile line is determined parametrically by a equation in the form
of two dependences of the Cartesian coordinates on parameter. For a smooth
closed loop the Cartesian coordinates are periodic analytical functions x(s)
and y(s). Their Fourier series coefficients decrease exponentially depend-
ing on the harmonic number. In the meantime, for a sharp edge loop they
decrease much slower — inverse proportional to the square of the harmonic
number. A substantial improvement of the Fourier series coefficients con-
vergence may be obtained as follows. Let the digitized profile be given by
the Cartesian coordinates xn, yn, n = 1, 2, . . . , N so that the sharp edge
corresponds to the coordinates origin (Fig. 1).

Then, if we continue by symmetry the profile curve, we will obtain a
self-intersecting line at the coordinates origin in the shape of eight, shown
in Fig. 2. The points of this curve are defined as follows: x̄n = xn,
x̄N+n = −xN−n; ȳn = yn, ȳN+n = −yN−n; n = 1, 2, . . . , N . The
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Fig. 2. Fig. 3.

advantage of this curve compared to the initial one consists in the fact that
on a double period 0, 2l it is determined by smooth infinitely differentiable
functions x̄(s) and ȳ(s). On a double period they can be calculated using
quickly converging Fourier series. Furthermore, symmetry considerations
imply that they will contain only sinuses

x =

m∑

n=1

an sinnγ, y =

m∑

n=1

bn sinnγ,

an =
1

N

2N∑

n=1

x̄n sin
2πni

2N
, bn =

1

N

2N∑

n=1

ȳn sin
2πni

2N
.

The velocity distribution at the boundary of the profile is found from the
integral equation. With the help of quadrature formulae with no saturation,
it is reduced to a linear system of equations. Checking the accuracy of cal-
culations is carried out using generalized Zhukovsky profiles. They are built

as follows. Equation z−z0e
iϕ

z+z0eiϕ
=
(

Z−Z0e
iϕ

Z+Z0eiϕ

)z0/Z0

implies that the complex

variable z can be expressed through Z: z(Z) = z0e
iϕ 1+σ(Z)

1−σ(Z) , σ(Z) =
(

Ze−iϕ−Z0

Ze−iϕ+Z0

)z0/Z0

.

The complex variable Z is expressed through Z ′′: Z = (Z0 − ae−iβ +
Z ′′)eiϕ.

The boundary points on the plane z correspond to a circle of radius a
on the plane Z ′′. The form and the position of the profile on plane z are
determined by five parameters Z0, z0, β, a, ϕ. The angle of the sharp edge
equals τ = π(2 − z0/Z0). The circulation is found from the condition that
the velocity at the sharp edge equals zero: Γ = −4πU a sin(θ + β). It is
convenient to test use this exact solution for testing the numerical scheme.
For the comparison let us take the profile from fig. 2, that is, the parameters
of the profile are Z0 = 0.95, τ = 0.4, β = 0.1, a = 1, ϕ = 0. For angle
θ = 0 θ = 0 and unit flow velocity U = 1 we obtain the exact value of
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circulation Γ = −1.2545437, and for θ = 0.5 we obtain Γ = −7.09550658.
The results of calculus are presented in the array. In the first and second lines
are presented the values of circulation errors for N = 32; 48; 64 and 80.

N 32 48 64 80
θ = 0 ΔΓ −6× 10−4 −1× 10−4 −7× 10−5 −1× 10−5

θ = 0.5 ΔΓ 9× 10−4 7.7× 10−5 7× 10−5 6.7× 10−5
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Modeling and analysis of dynamic systems in robotics
polygon meshes

Vladimir N. Pichugin

Chuvash State University, Cheboksary, Russia

Three types of dynamic systems modeling are used in practice: on the
basis of inhomogeneous rational bézier splines, on the basis of polygonal
grids and on the basis of surfaces with hierarchical partitioning [1]. When
modeling dynamic systems an important issue is the detail of the object,
scene, and other visualization time (Fig. 1).

Fig. 1. Final polygon model with textures

The methodological recommendation for detailing the dynamic system,
confirmed by a number of experiments, is the choice of val-ues of the
number of points of the polygon grid from the range 10. . . 30 [1]. The
use of adaptive decimation does not have much influence on the speed of
the modeling algorithm, but significantly accelerates the calculation in the
analysis of dynamic systems [2].
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Symmetric extremal trajectories in left-invariant optimal
control problems

Alexey V. Podobryaev

A.K. Ailamazyan Program Systems Institute of RAS, Pereslavl-Zalesskiy, Russia

Geometric control theory (see for example [1]) deals with left-invariant
optimal control problems on a Lie group G. Consider a family of left-
invariant vector fields Fu that depend analytically on u ∈ U ⊂ R

n. Consider
also a left-invariant analytic function ϕ : G×U → R, a point q1 ∈ G, and a
fixed time t1 > 0. The problem is to find a control u ∈ L∞([0, t1], U) and
a Lipschitz curve qu : [0, t1] → G such that

∫ t1

0

ϕ(qu(t), u(t))dt → min,

q̇u(t) = Fu(t)(qu(t)), qu(0) = id, qu(t1) = q1 ∈ G.

(1)

The Pontryagin maximum principle [1, 2] gives us the necessary condi-
tions for optimality. We obtain a Hamiltonian vector field �H = sgradH on
the cotangent bundle T ∗G, where H is the maximised Hamiltonian of the
Pontryagin maximum principle. The projections of the trajectories of the
vector field �H are called the extremal trajectories.

Definition 1. A Maxwell point for an optimal control problem (1) is
a point where two distinct extremal trajectories meet one another with the
same value of the cost functional and the time. This time is called a Maxwell
time.

It is well known (see for example [3]), that an extremal trajectory can not
be optimal after a Maxwell point. That is why description of Maxwell points
plays an important role in investigation of optimality of extremal trajectories.
In particular, the first Maxwell time is an upper bound for the time of loss of
optimality (the cut time). A natural reason of appearance of Maxwell points
is a symmetry of extremal trajectories. Let us give corresponding definitions.

Definition 2. The exponential map of problem (1) is the map

Exp : g∗ ×R+ → G, Exp (p, t) = π ◦ et �H(id, p), (p, t) ∈ g
∗ ×R+,

where g is the Lie algebra of the Lie group G, and et
�H is the flow of the

Hamiltonian vector field �H .
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Definition 3. A symmetry of the exponential map is a pair of diffeomor-
phisms

s : W × R+ → W × R+, S : G → G such that Exp ◦s = S ◦ Exp,

where W ⊂ g∗ is an open dense subset.

Consider the trivialization of the cotangent bundle via left shifts:

τ : G× g
∗ → T ∗G, λ = τ(g, p) = dL∗

g−1(p) ∈ T ∗
gG,

g ∈ G, p ∈ g
∗ = T ∗

idG.

where Lg : G → G is the left shift by the element g ∈ G.
The Hamiltonian H is left-invariant, so we assume that H ∈ C∞(g∗).

A Hamiltonian vector field is a sum of the horizontal and the vertical
parts [1]:

�H(τ(g, p)) = d(g,p)τ( �Hhor(g, p) + �Hvert(p)),
�Hhor(g, p) = dLgdpH, �Hvert(p) = (ad∗dpH)p,

where dpH ∈ T ∗
p g

∗ � g is the differential of H at a point p.
We see that due to the left-invariance of the problem the Hamiltonian

system λ̇ = �H(λ) is triangular (its vertical part is independent of state
variables). So, one can naturally consider symmetries of the exponential
map induced by symmetries of the vertical part of the Hamiltonian system.

We introduce sufficient conditions for existence of extension of symme-
tries of the vertical subsystem to symmetries of the exponential map. Also
we give a construction of such extension.

Theorem 1. Let G be a connected Lie group, such that generic stabilizer
of the coadjoint action is connected and has dimension not more than 1.
Assume that H : T ∗G → R is a left-invariant Hamiltonian, and an operator
σ∗ : g∗ → g∗ is such that σ∗ preserves the Hamiltonian H and there holds
one of the two conditions:
(a) σ∗( �Hvert) = �Hvert and σ is an automorphism of the Lie algebra g;
(b) σ∗( �Hvert) = − �Hvert and σ is an anti-automorphism of the Lie algebra g.
Then the pair of diffeomorphisms (s, S−1) is a symmetry of the exponential
map, where

s(p, t) =

{
(σ∗p, t), in case (a),

(σ∗et
�Hvertp, t), in case (b),

and S : G → G is the (anti-)automorphism of the Lie group such that
didS = σ.
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Precession of the Kovalevskaya
and Goryachev-Chaplygin tops

Ivan Yu. Polekhin

Steklov Mathematical Institute, Moscow, Russia

Let us consider a Liouville integrable Hamiltonian system and suppose
that the level sets of the first integrals are compact. The motion in such a
system is always a periodic or quasi periodic winding of the invariant torus.
In special action-angle variables, the equations of motion have the following
simple form:

İ = 0, ϕ̇ = f(I). (1)

These equations are in some sense convenient since their solutions can be
presented explicitly in coordinates I , ϕ. At the same time, the simple form
of the system and its integrability do not directly lead to the understanding
of dynamics in original variables that have clear mechanical or geometrical
interpretation. Many classical mechanical systems, especially integrable tops,
can be considered as examples of such situations. Therefore, it would be
useful to have various interpretations of motion in these integrable cases for
an in-between view on the dynamics of the systems that is less complex than
the ‘explicit’ quadratures and more detailed than the general statement of the
Liouville-Arnold theorem.

One of the possible approaches to the description of motion of the Ko-
valevskaya top in the absolute space is provided by the result by V.V. Kozlov
stating that the line of nodes has a mean motion Λ (provided some mild con-
ditions are satisfied). To be more precise, the result means that the change
of the precession angle ψ as a function of time has the form

ψ(t) = ψ0 + Λt+ f(ϕ0
1 + ω1t, ϕ

0
2 + ω2t)− f(ϕ0

1, ϕ
0
2), (2)

where f is a continuous function on a two-dimensional torus. Therefore,
from the theorem, we obtain that the motion of the radius-vector of the
axis of dynamical symmetry in the absolute space is a composition of two
motions. First, if we put Λ = 0, then the radius-vector moves on the unit
sphere. If Λ �= 0 then the final motion is the composition of the motion on
the sphere and the rotation around the vertical axis with the angular velocity
Λ. This interpretation of motion is close to the classical picture of motion in
the Lagrange case. Taking into account the result on the existence of a mean
motion in the Kovalevskaya case, it is natural to try to find the dependence
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of Λ on the initial data. For instance, we can try to find the initial data for
which the mean motion of the precession angle is zero.

In the talk I will present some results concerning the change of the
precession angle for two classical integrable tops: the Kovalevskaya top
and the Goryachev–Chaplygin top. Based on the known results on the
topology of Liouville foliations for these systems, we find initial conditions
for which the average change of the precession angle is zero or can be
estimated asymptotically. Some more difficult cases are studied numerically.
In particular, we show that the average change of the precession angle for
the Kovalevskaya top can be non-zero even in the case of zero area integral.
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Dynamics of rolling and sliding rigid bodies

Maria Przybylska1, Stefan Rauch-Wojciechowski2

1 Institute of Physics, University of Zielona Góra, Licealna 9, PL-65–417 Zielona
Góra, Poland

2 Department of Mathematics, Linköping University, 581 83 Linköping, Sweden

Rigid bodies rolling and sliding in a horizontal plane belong to famous
examples of nonholonomic mechanics. We will present results concerning
dynamics of a rolling and sliding disk, a rolling rattleback and a rolling and
sliding Jellett’s egg. Dynamics of these systems is very complicated and
hard for analysis because they are described by high-dimensional systems
of non-integrable differential equations. In our analysis we use analytical
and numerical calculations. Analytical studies are restricted to determination
of asymptotic solutions: vertical spinning solutions, tumbling solutions and
straight rolling solutions (only for disc) and analysis of their linear stability.
These results are complemented with numerical simulations which provide a
basis for better understanding of the behaviour of the investigated systems.
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Symplectic classication of spherical 2-atoms

Aleksandrina Yu. Rembovskaya

Lomonosov Moscow State University, Moscow, Russia

A Hamiltonian system with one degree of freedom is given by a function
(Hamiltonian) on a two-dimensional symplectic manifold. If the Hamiltonian
is a Morse function, then the neighborhood of its critical level containing
saddle critical points is a two-dimensional surface P with a symplectic form
on which a function having exactly one saddle critical value is given. This
surface with a function on it is called a 2-atom (or simply an atom). Atoms
are called symplectic equivalent if there is a symplectomorphism from one
atom to another that translates levels of one function into levels of another.
It is known that two symplectic equivalent atoms have the same variables of
action. However, for arbitrary atoms, the coincidence of the action variables
is not enough to state that they are symplectically equivalent.

Theorem. Two topological equivalent spherical atoms with one atom’s
circle symplectically equivalent if corresponding period functions equal.
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Bifurcation Diagram and its Visualization in the One
Generalized Integrable Model of Vortex Dynamics

Pavel E. Ryabov1,2,3, ArtemiyA. Shadrin1

1 Financial University under the Government of the Russian Federation, Moscow,
Russia

2 Institute of Machines Science, Russian Academy of Sciences, Moscow, Russia
3 Udmurt State University, Izhevsk, Russia

The report is devoted to results of phase topology research on a gener-
alized mathematical model which covers such two problems as dynamics of
two point vortices enclosed in a harmonic trap in a Bose-Einstein condensate
and dynamics of two point vortices bounded by a circular region in an ideal
fluid.

The generalized mathematical model is described by a Hamiltonian sys-
tem of differential equations

Γkẋk =
∂H

∂yk
(z1, z2), Γkẏk = − ∂H

∂xk
(z1, z2), k = 1, 2, (1)

where the Hamiltonian H has the form

H =
1

2

[
Γ2
1 ln(1− |z1|2) + Γ2

2 ln(1− |z2|2)+

+ Γ1Γ2 ln

(
[|z1 − z2|2 + (1 − |z1|2)(1− |z2|2)]ε

|z1 − z2|2(c+ε)

)]
.

Here, the Cartesian coordinates of k-th vortex (k = 1, 2) with intensities Γk

are denoted by
zk = xk + iyk. Physical parameter “c” expresses the extent of the vortices’
interaction, ε is a parameter of deformation, which determines two limiting
cases, namely, a model of two enclosed in a harmonic trap point vortices in
a Bose-Einstein condensate (ε = 0) [1] and a model of two bounded by a
circular region point vortices in an ideal fluid (c = 0, ε = 1) [2].

The phase space P is defined as a direct product of two open disks
of radius 1 with the exception of vortices’ collision points. The Poisson
structure on the phase space P is given in the standard form {zk, z̄j} =
− 2i

Γk
δkj , where δkj is the Kronecker delta. System (1) admits an additional

first integral of motion, the angular momentum of vorticity, F = Γ1|z1|2 +
Γ2|z2|2.
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The function F together with the Hamiltonian H forms on P a com-
plete involutive set of integrals of system (1). According to the Liouville-
Arnold theorem, a regular level surface of the first integrals is a noncon-
nected union of two-dimensional tori filled with conditionally periodic tra-
jectories. The momentum mapping F : P → R

2 is defined by setting
F(x) = (F (x), H(x)). Let C denote the set of all critical points of the mo-
mentum mapping, i.e., points at which rank dF(x) < 2. The set of critical
values Σ = F(C ∩ P) is called a bifurcation diagram.

In works [3] and [4] the bifurcation diagram was analytically investigated
at c = 1 and ε = 0. In [5] and [6] a reduction to a system with one degree
of freedom was performed and a bifurcation of three tori into one was found
at c > 3 and ε = 0. This bifurcation was observed earlier by Kharlamov [7]
while studying a phase topology of the Goryachev-Chaplygin-Sretensky in-
tegrable case in rigid body dynamics. In Fomenko, Bolsinov, and Matveev’s
work [8] it was found as a singularity in a 2-atom form of a Liouville foli-
ation’s singular layer. In Oshemkov and Tuzhilin’s work [9] devoted to the
splitting of saddle singularities, such a bifurcation was found to be unsta-
ble and its perturbed foliations were presented. In the situation where the
physical parameter of vortices’ intensity ratio is experiencing integrable per-
turbation, said bifurcation comes down to the bifurcation of two tori into one
and vice versa [5]. In another limiting case (c = 0, ε = 1), the bifurcation
analysis of dynamics of two point vortices bounded by a circular domain in
an ideal fluid is performed [2]. In these limiting cases completely different
bifurcation diagrams were obtained. In the case of a positive vortex pair [10]
a new bifurcation diagram is obtained for which the bifurcation of four tori
into one is indicated. The presence of three-into-one and four-into-one tori
bifurcations in the integrable model of vortex dynamics with positive inten-
sities indicates a complex transition and connection between two bifurcation
diagrams in both limiting cases.

The report proposes an algorithm for an interactive visualization of the bi-
furcation diagram Σ and the bifurcations of Liouville tori for the generalized
mathematical model described by (1) using Python and Jupyter Notebook
capabilities.

The work of P. E. Ryabov was supported by RFBR grant 17-01-00846
and was carried out within the framework of the state assignment of the
Ministry of Education and Science of Russia (1.2404.2017/4.6).
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Abnormal extremals in (2, 3, 5, 8) sub-Riemannian
problem

Yury L. Sachkov1, Elena F. Sachkova1

1 Program Systems Institute of RAS, Pereslavl-Zalessky, Russia

We consider the left-invariant sub-Riemannian problem with the growth
vector (2, 3, 5, 8). The Hamiltonian flow for normal extremals for this prob-
lem is not Liouville integrable [1].

Instead, we study abnormal extremals for this problem. We show that
abnormal extremals are obtained as the intersection of the symplectic foli-
ation on the Lie coalgebra with the annihilator of square of the underlying
distribution. Further, we describe qualitative types of abnormal extremals
(including non-smooth ones). We characterize strictly abnormal and non-
strictly abnormal geodesics. Further, we show that projections of abnormal
extremals to the plane of underlying distribution are curves of the second and
first order. Finally, we obtain bounds for corank of abnormal geodesics [2].
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Dynamics of a point in the axisymmetric potential of a
massive fixed ring and center

Aleksandr V. Sakharov

Moscow Institute of Physics and Technology, Dolgoprudny, Russia

We consider a problem of three-dimensional motion of the passively
gravitating point A in the potential created by a homogeneous thin ring and
a massive point O, located in the center of the ring (fig. 1). The ring and
center O are assumed to be fixed. Is such formulation potential is discribed
by the expression [1–3]:

Π = −1− μ

r
− 2μK(k)

πp
,

where 1−μ — mass of the center O (0 < μ < 1), μ — mass of the ring, r —
distance from the center O to the point A, K(k) — complete elliptic integral
of the first kind with the module k =

√
1− q2/p2, q and p — minimum and

maximum distance from the point A to the ring respectively (0 ≤ k < 1).
Because of the axisymmetric symmetry of the problem it is convenient

to consider cylindrical coordinate system ρ, ϕ, z. Then the potential doesn’t
depend on the angle ϕ. Defining the effective potential (fig. 2) it is possible
to decrease the equations of motion by two orders of magnitude:

ρ̈ = −∂Π̃

∂ρ
, z̈ = −∂Π̃

∂z
, Π̃(ρ, z) = Π(ρ, z) +

c2

2ρ2
, c = ρ2ϕ̇ = const.

The system also admit the integral of energy h =
(
ρ̇2 + ż2

)
/2 + Π̃(ρ, z),

which allows reduce order of the system.
In the study, invariant manifolds of the phase space of the system were

found, some partial motions were described and classified, and phase por-
traits were constructed. Using the Poincare section, a stochastic layer was
found. It was showed that in comparison with the work [3] some particular
motions are preserved.
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Fig. 1. Massive center O, ring and
point A Fig. 2. Effective potential Π̃(ρ, z)
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Hamiltonian systems and Lagrangian manifolds,
corresponding to linearized equations of relativistic

hydrodynamics

Andrei I. Shafarevich

Moscow State University, Moscow, Russia

We study short-wave asymptotic solutions of the linearized equations of
relativistic hydrodynamics. These solutions are expressed in terms of conical
Lagrangian manifolds in the cotangent bundle to the Minkowsky space. We
discuss modes, corresponding different types of characteristics, and geomet-
ric phase –– connection in the line bundle over Lagrangian surface, which
govern the evolution of the wave amplitude.
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Experimental investigations of the control algorithm of a
mobile manipulation robot on a highly maneuverable

platform with omniwheels

Vyacheslav A. Shestakov1, Kirill S. Efremov1, Yury L. Karavaev1

1 Kalashnikov Izhevsk State Technical University, Izhevsk, Russia

The mobile manipulation robot is a mobile platform on which manipula-
tion and gripping mechanisms are placed. The design of a mobile platform
with omniwheels is the most promising from the point of view of practical
application due to the possibility of omnidirectional movement. Previously,
management task of a highly mobile platform were discussed in works [1, 2,
3], and theoretical studies of the mobile manipulation robot were conducted,
during which design was analyzed and the influence of center mass’s position
on the trajectory of motion was determined [4, 5, 6].

This paper presents experimental investigations of the control algorithm
of a mobile manipulation robot on a highly maneuverable platform with
omniwheels. During the execution of the algorithm, the following tasks are
solved: recognition of a object of manipulation, determination of the distance
to it; solution of the inverse positional problem for the mobile manipulation
robot taking into account the minimization of energy consumption per move-
ment. The result of the algorithm is the capture and loading of the object
of manipulation, inaccessible to capture without the movement of the mobile
platform.

The reported research was funded by Russian Foundation for Basic Re-
search and the government of the region of the Russian Federation, grant
No. 18-48-183004 r mol a.

References

[1] Borisov A.V., Kilin A.A., Mamaev I. S. An omni-wheel vehicle on a plane
and a sphere // Russian Journal of Nonlinear Dynamics, 2011, vol. 7, no. 4,
pp. 785–801.

[2] Kilin A.A., Bobykin A.D. Control of a Vehicle with Omniwheels on a Plane //
Russian Journal of Nonlinear Dynamics, 2014, vol. 10, no. 4, pp. 473–481.

[3] Kilin A., Bozek P., Karavaev Y., Klekovkin A., Shestakov V. Experimental
investigations of a highly maneuverable mobile omniwheel robot // International
Journal of Advanced Robotic Systems, 2017, vol. 14, no. 6, pp. 1–9.

177



Fig. 1. Structural scheme a) and a prototype b) of a mobile manipulation robot on a
highly maneuverable platform with omniwheels
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Estimation of azimuthal instabilities under the joint action
of laser radiation and a magnetic field on a plasma

Vyacheslav V. Shumaaev

Bauman Moscow State Technical University, Moscow, Russia

One of the main obstacles to the uniform laser compression of a fusion
target is the plasma formation instability (the Rayleigh – Taylor instability is
the most dangerous). In all the considered schemes, the impulsive character
is important [1–14]. In this case, not all possible plasma instabilities are
dangerous, but only those of them that most rapidly increase with time (for
example, Rayleigh-Taylor instability).

Let us estimate the value of azimuthal instabilities of the Rayleigh –
Taylor type in the combined effect of laser radiation and a magnetic field
on the plasma, using separate results of [15, 16]. Let us turn to the coor-
dinate system associated with the spatially averaged position of the contact
boundary. In this case, the volume forces acting on the contact boundary will
either accelerate its movement (at the first two stages: d2r/dt2 = a > 0), or
slow down (at the third stage: a < 0). The speed of azimuthal disturbances
development in time is determined by the relation:

ω2 ≈
∣∣∣∣
dV

dt

∣∣∣∣ k ≈
∣∣∣∣
dV

dt

∣∣∣∣
�

r
,

d
−→
V

dt
=

d2−→r
dt2

, (1)

where the wave number k is determined by the condition λ� = 2πr, � =
1, 2, 3, . . .; λ = 2π/k is the length of the azimuth wave. On the contact
boundary between the solid wall of the target and the environment, the
following boundary condition can be set:

km
∂Ts

∂r
= q −Dρ0Ω. (2)

Assuming that the relationship (2) is satisfied, it is possible to determine the
speed of movement D and acceleration dD/dt of the contact boundary in a
relative coordinate system:

D =
q (t)

ρ0Ω
, a =

dD

dt
=

dq/dt

ρ0Ω
, (3)

where ρ0 is the density of the target substance, Ω is the specific heat of
evaporation (phase transition) of the target substance, q(t) is the flux density
of broadband radiation on the target.
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The magnitude of the acceleration of the contact boundary can be esti-
mated using an approximate ratio of the form:

dV

dt
=

dD

dt
+

P
ρ0

± H2

2ρ0π
− V 2

/
2

δ
,

where δ is the target wall thickness, ρc = m0me

4πe2

(
2πc
λ

)2
= 1, 83 × 10−3Aλ

z
is the critical plasma density, m0 is the mass of one particle of a substance
(molecule, atom or ion), A is the atomic weight of plasma nuclei, λ is the
laser radiation wavelength, z is the average ion charge, P ≈ q2/3ρ

1/3
c is the

value of the maximum pressure that can be achieved in the plasma.
Then the maximum time 1/ω for the development of the Rayleigh –

Taylor instability:
1

ω
≈
√

r∣∣∣d
−→
V
/
dt
∣∣∣ �

. (4)

From relation (4) it follows that in the process of compression (r → 0), the
probability of instability increases. It also follows that an increase in the
rate of heating of the target (dq/dt → ∞) can have a negative role on the
development of instability. However, by the time instant t1 target material
vapors form, near the contact boundary, a very dense layer of vapor that
does not pass laser radiation q(t) through it. The screening process is also
facilitated by the compression of the plasma vapor layer using an external
magnetic field.

This research is supported by the Russian Ministry of Science and Higher
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nical University Target Program for 2018–2020.
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On the Influence of the Pressure Gradient on the Electron
Concentration in the Wake of Descent Spacecraft

Nikolai I. Sidnyaev1, Vladimir U. Loginov1

1 Bauman Moscow State Technical University (BMSTU), Moscow

A characteristic feature of the problems of aerodynamics and heat transfer
of high supersonic velocities is the need for joint account of dissipative
processes due to viscosity, thermal conductivity and diffusion, as well as
physical and chemical processes in the “trace” (see Fig. 1), which can lead
to qualitatively new effects in comparison with the flows of perfect gas [1–
3]. In such tasks, it is necessary to take into account the multicomponent,
high temperature, chemically reacting mixture in a high-speed flow, in which
various gas-dynamic processes can occur. In the case of non-equilibrium flow
it is necessary to take into account a number of new processes of chemical
energy transfer, which are not taken into account in equilibrium flows or in
the flow of an ideal gas. In particular, the interaction of the surface of the
spacecraft (SC) with the atmosphere is essential to its catalytic properties. On
the flight path in the atmosphere flow regimes in the Wake of spacecraft vary
from subsonic tomolecule O2 and N2, however, the model of perfect gas can
be used only in the field of supersonic velocities. Air dissociation is observed
in the hypersonic region and it is necessary to use a 5-component model to
describe it (O2, N2, NO, O, N) [1, 7]. At Mach numbers greater than 12,
ionization is observed and in this case it is necessary to take into account 7
components, and at Mach more than 17–11 components. In comparison with
the kinetics of homogeneous reactions, the mechanism and rates of processes
determining the interaction of gas with the surface are much less studied and
expressed quantitatively [1]. The coefficients characterizing the processes on
the surface depend both on the surface properties and on the conditions in the
gas phase [7]. Therefore, both in experiments and in flight conditions, when
studying the electron concentration in the “trace”, it is required to apply very
accurate theoretical models of the flow and methods for calculating heat
transfer with the corresponding gas-phase reactions on the surface.
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Численные исследования предельного сопротивления
остроугольного анизотропного клина сдвигу и отрыву

Марина Е. Сироткина1, Елена Г. Ефимова1, Евгения В. Володина1

1 ЧГУ имени И.Н. Ульянова, Чебоксары, Россия

Предлагается обобщение исследований предельного напряженного
состояния остроугольного клина с учетом анизотропных свойств матери-
ала и его разрывной в силу составного материала клина неоднородности.
По разные стороны от линии разрыва свойств анизотропный материал
клина обладает различными пределами текучести [1]. Условия предель-
ного сопротивления деформациям сдвига имеют вид τn (γ) = C1 (γ),
τ ′n (γ) = C′

1 (γ) в зоне, примыкающей к нагруженной грани, τn (γ) =
C2 (γ), τ ′n (γ) = C′

2 (γ) в зоне, примыкающей к свободной от нагруз-
ки грани. C1(γ), C2(γ) — предельные касательные напряжения на пло-
щадках, составляющих угол γ с осью Ox. Условия сопротивления отры-
ву в зоне растягивающих напряжений имеют вид σn (γ) = d (γ − λd),
σ′
n (γ) = d′ (γ − λd), где d (γ) — предел сопротивления анизотропного
материала отрыву [2].

Из условий равновесия элементов клина на линии разрыва и в зоне
отрыва составлена и решена система нелинейных уравнений для на-
хождения геометрических параметров составного остроугольного клина
и предельной нагрузки.
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Bifurcation Diagram For Two Vortices of Opposite Signs
in Trapped Bose–Einstein Condensate

Sergei V. Sokolov

Moscow Institute of Physics and Technology, Moscow, Russia

Dynamics of the vortex filaments is traditional object of interest for
mathematicians and physicists. At recent three decades a lot of experimental
and theoretical results were obtained for the new physical object – Bose-
Einstein condensate, in which vortex filaments also can be observed.

This report will be concerned on the dynamics of two vortex filaments
in a Bose-Einstein condensate confined into the trap. We introduce new
results of topological analysis of corresponding dynamical system. Work
based on our previous results [1–3]. Mentioned above dynamical system is
a completely Liouville integrable Hamiltonian system with two degrees of
freedom. Here we introduce the bifurcation diagram of momentum map and
corresponding bifurcations of Liouville tori. With comparison of the [3] we
discuss vortices with intensities of the opposite signs.

The work of S. V. Sokolov was carried out at MIPT under project 5–100
for state support for leading universities of the Russian Federation and also
partially support by RFBR grant 18-01-00335.
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The investigation of whirlwind in stability of the plasmoid
above the water surface

Gennady M. Sorokin1, Tatiana G. Terekhova1

1 Chuvash State University, Cheboksary, Russia

With the help of an optical Tyopler device the processes of origin, forma-
tion and decay of the plasmoid of 10–12 cm in diameter were investigated.
The experimental setup for obtaining such plasmoids as a result of the high-
voltage discharge in the steam–and–air area is described in [1]. The working
area of the interferential shadow device of AIB–458 type represents a circle
in diameter of 20 cm that allows to observe the streams of gas and plasma
near the object under study. The process of injection of an electron beam
in the steam–and–air area was recorded. By means of the digital system of
registration the video pictures showing the formation of spherical plasmoids
and its decay are obtained. The authors believe that the warming of the
bottom surface of the plasmoid from the side of the not cooled down elec-
trode corresponds to the process of decay of the plasmoid. The difference
of the temperatures from above and from below the spherical shell leads
to disruption of the thermodynamic equilibrium inside the plasmoid, which
decomposes, turning into a turbulent ring whirlwind. The paper discusses,
that time of life of a ring whirlwind is approximately equal to time of life of
a spherical plazmoid.
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Bifurcation analysis of periodic motions originating from
hyperboloidal precession of a dynamically symmetric

satellite

George A. Sukhov

Moscow aviation institute, Moscow, Russia

We deal with periodic motions of a symmetric satellite originating from
its Hyperboloidal precession. The satellite is considered to be a dynamically
symmetric rigid body with principal moments of inertia J1, J2 and J3 (J1 =
J2). Its center of mass O moves in a circular orbit in central Newtonian
gravitational field at angular velocity ω0. To describe the satellite’s motion
around its center of mass we introduce an orbital reference frame OXY Z
and a mobile reference frame Oxyz. Axes OX , OY and OZ are aligned
with transversal and normal vectors to the orbit and with the radius-vector
of the satellite’s center of mass, respectively. Axes Ox, Oy and Oz are
aligned with the satellite’s principal axes of inertia. Relative position of
these reference frames is defined by Euler’s angles ψ, θ, φ. Following [1]
the equations of motion of a dynamically symmetric satellite can be written
in a canonical form with the following Hamiltonian:

H =
p2ψ

2 sin2 θ
+

p2θ
2

−
(
γ cos θ

sin2 θ
+ cosψ cot θ

)
pψ−

− sinψpψ +
1

2
γ2 cot2 θ + γ

cosψ

sin θ
+

1

2
δ cos2 θ,

(1)

where pψ and pθ are dimensionless impulses corresponding to ψ and θ,
γ = J3

J1

r0
ω0

and δ = 3 (J3/J1− 1) are dimensionless parameters and r0 is
projection of satellite’s absolute angular velocity along its principal axis Oz.
The independent variable is true anomaly ν = ω0t. The system possesses a
cyclical coordinate φ and its respective impulse pφ retains constant value.

Equations of motions with Hamiltonian (1) possess a particular solution
θ0 = π

2 , cosψ0 = −γ, pθ0 = sinψ0, pψ0 = 0 known as Hyperboloidal pre-
cession. If δ > 0 the Hyperboloidal precession is Lyapunov stable and two
types of periodic motions exist in its neighbourhood: short-periodic motions
with period close to 2π/ω2 and long-periodic motions with period close to

2π/ω1, respectively, where ω1,2 =

√
1/2
(
δ + 1∓

√
(δ − 1)2 + 4γ2δ

)
are

the frequencies of the linearized system. In [2–4] the aforementioned peri-
odic motions were obtained analytically in form of power series. Analytical
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representation is only valid for small deviations Δh of energy integral con-
stant h from its value for Hyperboloidal precession. For non-small values of
Δh a numerical method was used [3–5].

In this work a numerical bifurcation analysis was carried out for families
of periodic motions originating from Hyperboloidal precession of a symmet-
ric satellite in a non-resonant case and in case of third (ω2 = 2ω1) and
fourth (ω2 = 3ω1) order resonances. Fig. 1. shows the existence domains
of these families for δ = 1.0. For small values of Δh (h � 0.005) in a
non-resonant case there exist one family of long-periodic motions Γ1, Γ2 or
Γ4 and one family of short-periodic motions ΓS . In the neighborhood of
third-order resonance there exist two families of long-periodic motions Γ1

and Γ2 and the family ΓS . In the neighborhood of fourth-order resonance
there exist three families of long-periodic motions Γ2, Γ3 and Γ4 and the
family of short-periodic motions ΓS . B1–B5 are bifurcation points of said
families for h = 0.001, δ = 1.0. To the left of the point B1 there exist
two families of periodic motions originating from Hyperboloidal precession
– ΓS and Γ1. Family Γ2 detaches from Γ1 in point B1. In point B2 family
Γ1 coincides with ΓS . Between points B2 and B3 there exist families Γ2

and ΓS . In B3 famillies Γ3 and Γ4 appear. Γ2 and Γ3 coincide with ΓS in
point B4. In B5 family Γ4 coincides with ΓS . Fig. 2. shows evolution of a
Poincare map near the point B1 where family Γ2 detaches from Γ1.

This work was carried out at the Moscow Aviation Institute (National
Research University) within the framework of the state assignment (project
No. 3.3858.2017/4.6)
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Fig. 1. Existence domains of periodic motions originating from Hyperboloidal preces-
sion of a satellite for δ = 1.0. Γ1,Γ2,Γ3,Γ4 are families of long-periodic motions,
B1–B5 are bifurcation points

Fig. 2. Poincare maps computed in the neighborhood of a bifurcation point B1.
The left map shows motions belonging to ΓS and Γ1 before bifurcation where both
motions are linear orbital stable. The right map shows motions belonging to ΓS , Γ1

and Γ2 where ΓS becomes orbital unstable
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Modeling and Motion Analysis of a Fluid Actuated
Spherical Rolling Robot

Seyed Amir Tafrishi1, Mikhail Svinin2,
Esmaeil Esmaeilzadeh3, Motoji Yamamoto1

1 Mechanical Engineering Department, Kyushu University, Fukuoka, Japan
2 College of Information Science and Engineering, Ritsumeikan University, Kusatsu,

Japan
3 Mechanical Engineering Department, Tabriz University, Tabriz, Iran

Recently, rolling-based locomotion systems are receiving considerable
attention in the literature on robotics [1]. In this paper, we propose and
analyze a novel spherical mobile robot (see Fig. 1) based on the mass im-
balance driving principle. The design features two spherical masses moving

Fig. 1. Fluid-actuated spherical robot (up) and schematic of the driving unit (down)
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inside two perpendicular circular pipes, which creates mass imbalance and
results in the robot locomotion. The driving force is generated by the internal
driving unit (IDU) which circulates the incompressible fluid via a moving
pneumatic cylinder that works as a pump actuator to create a continuous
flow. The flow is circulated through the circular pipes and neutralized tank
via relatively small rectilinear injection pipes. The cylinder provides the flow
of the fluid while control valves manipulate the flow direction. The cylinder
is connected to a linear actuator for controlling the pressure of the injected
fluid.

First, we describe the structure of the robot and derive its nonholonomic
dynamics by using the D’Alembert principle. Next, we model the internal
driving unit that actuates the driven masses inside the circular pipes. The
viscous force (decomposed to the head loss and the drag) and the buoyancy
force, acting on the moving masses within the pipe, are also taken into
account. The driving force is proportional to the fluid pressure which is
obtained by solving algebraic Bernoulli equations together with the states
variables of the dynamic model of the linear actuator. The driving unit is
studied with respect to three parameters—the input motor torque, the actuator
size and the fluid properties—and the design constraints are formulated. The
overall model of the robot is then used for analyzing motion patterns of the
rolling robot under simulations. The simulation results show the performance
and verify the feasibility of the robot actuation system.
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Numerical solution of the problem of flow around flexible
arcs

Alexey G. Terentyev1, Nikolay A. Fedorov1

1 Chuvash State University, Cheboksary, Russia

Because of the great practical importance of the problem of flow around
the periodic cascade was considered by many authors (Kochin N. E., Se-
dov L. I., Stepanov G.Yu., Terentyev A.G., Kuznetsov Yu.V., etc.), and the
shape of the profile was considered to be given. The first two authors ob-
tained an exact analytical solution that serves as a benchmark for comparing
exact and numerical methods. In contrast to the isolated profile, the flow
rates before and after the periodic flow are different (ν−iα1

1 , ν−iα2
2 ). If Γ

is the circulation around the foil, leiβ is the period of the cascade, then in
accordance with the theorem on the change of momentum one obtains the
equality

ν2e
−iα2 − ν1e

−iα1 =
Γ

l
e−iβ . (1)

The vector of the resultant force is

X − iY = iρ
Γ

2
(ν1e

−iα1 + ν2e
−iα2). (2)

Of the seven parameters that characterize the flow of around through the
periodic cascade, only four can be set, for example, ν−iα1

1 and leiβ , and the
flow velocity behind the periodic cascade ν−iα2

2 and circulation are to be
determined. Since the vector of the resulting force of the isolated profile and
the profile in the periodic cascade differ both in magnitude and direction,
it is therefore necessary to compare their projections to any direction, for
example, to the direction of the period eiβ

K =
Im((X − iY ) eiβ)

Im((X0 − iY0) eiβ)
=

Γ Im
(

ν1e
−iα1+ν2e

−iα2

2 eiβ
)

Γ0 Im(ν1e−iα1)
. (3)

The dependence is shown in Fig. 1. There’s also shows the dependence
of the monograph by L. I. Sedov [1]. It can be seen that the curves are very
different from each other.

In the case of arcs with fixed edges on the deformable arc, the Dirichlet
condition (current function ψ = const) and the Laplace condition must be
satisfied

p− − p+

2
= −T · ∂θ

∂s
, (4)
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Fig. 1. K(β, T ) — periodic cascade effect, K0(β, T ) –– the effect of cascade [1]

where T is the tension, p− − p+, the pressure difference above and below
the curved arc is a curvilinear coordinate, θ — is a tangent angle.

A numerical algorithm for studying the flow through a periodic flow with
flexible arcs on the basis of an iterative process is proposed. At each stage,
the boundary element method numerically solves the problem of the flow
around the arc periodic cascade with a given configuration [2], and then the
arc shape is corrected using the condition (1). The process is repeated until
the specified accuracy is achieved

∑
k

(
y
(n)
k − y

(n−1)
k

)

∑
k

y
(n)
k

� ε. (5)

An analytical solution for the isolated arc in the case of small angles α1,
α2 and large tension T is also obtained. In Fig. 2 comparison of numerical
results by iterative method and analytical formulas is shown.

A detailed numerical analysis of the cascad of arbitrary foiles including
soft arcs is given. It is shown that flexible blades allow obtaining sufficiently
high hydrodynamic characteristics
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Fig. 2. –– analytical formulas is shown, –– iterative method
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AI Driving Olympics challenge: reinforcement learning
approach solving line following task

Stepan S. Troeshestov1,3, Vladimir A.Aliev1,
Anton E.Mashikhin1, Sergey I. Nikolenko1,2

1 Samsung AI Center, Moscow, Russia
2 Neuromation OU, Tallinn, Estonia

3 Chuvash State University, Cheboksary, Russia

Abstract: We are a team from Samsung AI Center Moscow and we
participated in AI Driving Olympics Challenge. The problem was to learn
how to control the car called Duckiebot on a simple track. It was encouraged
by organizers to do this with Reinforcement Learning approach.

Tracks and scoring: To train our agent we used the simulator provided
by the organizers. To avoid overfitting our agent to a specific track, we
created own one, complicated, with different objects, intersections, and turns.
Scoring consists of the following things:

• How many track tiles the Duckiebot drove (maximum episode length
is 16.6 secs)

• How much time passed before the Duckiebot drove off the road

• How far the Duckiebot drove from the center of its lane

• Penalty for driving in the wrong lane

The default reward in the simulator was a linear combination of all 4 parts.
Our approaches: At the very beginning, we decided to try the state-of-

the-art reinforcement learning algorithms from scratch. The default input for
the task was a picture from the simulator. We took 3 consecutive pictures,
grayscaled them and fed into CNN as different channels. The default output
was continuous actions: velocity and steering. Technically, there are 2
wheels (left and right) on the Duckiebot and it was possible to control them
separately from -1 to 1. We tried 4 algorithms that can provide continuous
actions:

• Soft Actor-Critic (SAC)

• Deep Deterministic Policy Gradient (DDPG)

• Twin Delayed Deep Deterministic Policy Gradient (TD3)

• Proximal Policy Optimization (PPO)

but they all worked much worse than we expected.
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Actions: The main problem with continuous actions was poor local min-
imas. Without any modifications, the agent learns to stay still. Disappointed
with continuous actions, we tried to train the algorithm on discrete ones. We
chose 5 discrete actions: full forward, forward-left, forward-right, turn left
without moving forward, turn right without moving forward. We removed
driving backward because we didn’t need it at all. As RL algorithms that can
provide discrete actions, we tried different Deep Q-networks (DQN). After
some reward engineering, we choose Rainbow DQN and made it to the 5th
place.

Controller: We decided to make a manual proportional controller and
train RL agent with it. Our controller was pretty simple. We compute the
current step destination point and the angle between where we need to go
and where the Duckiebot looks now. Then we give the command to motors
based on this angle.

Final solution: As a result, the controller only needs one angle to
calculate the action. We decided to use noisy controllers as an exploration
strategy. So, we had workers-controllers who drove in the simulator and
put their experience in the replay buffer. TD3 optimizer sampled from this
buffer and made a gradient update. The resulting T3 agent also drove in
the simulator and put his own experience in the replay buffer. Initially, the
replay buffer was 90 percent of the controller-workers and 10 percent of the
RL agents, but over time the number of the agents increased until it became
100 percent.
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Artificial neural networks for creation of energetic
materials genome

Daria A. Troeshestova1, Victor S. Abrukov1, Michael V. Kiselev1,
Nichith Chandrasekaran2

1 Chuvash State University, Cheboksary, Russia
2 Indian Institute of Science, Bangalore, India

The results of usage of data science methods, in particular artificial neu-
ral networks, for the creation of new multifactor computational models of the
energetic materials (EM) combustion that solve the direct and inverse tasks
are presented. The analytical platform Loginom was used for the models
creation. The models of combustion of double based EM with such nano
additives as metals, metal oxides, metal salts, metal composite materials, or-
ganic metallic compounds, termites and carbon nano materials were created
by means of experimental data published in scientific literature. The goal
function of the models were burning rate (direct tasks) as well as propel-
lants composition (inverse tasks). The basis (script) of a creation of Data
Warehouse of EM combustion was developed. The Data Warehouse can be
supplemented by new data in automated mode and serve as a basis for cre-
ating generalized combustion models of EM and thus the beginning of work
in a new direction of combustion science, which the authors propose to call
“Advanced Energetic Materials Genome” (by analogy with a very famous
Materials Genome Initiative, USA). The usage of such modern methods of
Data Science as deep learning neural networks, multiple adaptive regression
splines, modern decision trees, etc could make the possibilities of multifac-
tor modelling of EM combustion most wide. “Advanced Energetic Materials
Genome” opens new possibilities for accelerate the advanced energetic ma-
terials development.

Illustrations of our previous work deal with this abstract are presented
on the Web-site: http://www.wcrc.ru/Indo-Russian-JRP.html. Also it has
an example of autonomous computer module of a multifactor computational
model of the EM combustion. Anyone can download the module and execute
research on their own and obtain all graphs which depict relationship between
variables of the object.

We are ready to help to any researcher to create a multifactor compu-
tational model of his own experiment. If you have a data base (a table)
of experimental measurements we will be able to create yours multifactor
computational model.
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Integrable systems with algebraic first integrals

Andrey V. Tsiganov

Saint Petersburg State University, Saint Petersburg, Russia

According to Abel’s theorem set of points moving along a plane curve
can be subjected to a finite number of algebraic constraints in such a way that
a sum of the corresponding indefinite algebraic integrals can be expressed in
terms of elementary functions of the coordinates of the moving points.

In 1863 Clebsch proposed geometric approach to construction of alge-
braic constraints, closely interwoven with the intersection theory, which was
continued by Brill and Noether in 1857 and formalized by Poincaré in 1901
and Severy in 1914. According to this interpretation algebraic constraints are
coordinates of the fixed points on the curve and, therefore, system of Abel’s
differential equations is described a motion of the k points around m fixed
points on the plane curve.

In classical mechanics movable points describe evolution of dynamical
system in term of variables of separation, whereas coordinates of the fixed
points play the role algebraic integrals of motion or parameters of discretiza-
tion. In this talk we discuss some examples of such algebraic integrals and
the corresponding closed algebraic trajectories for dynamical systems on the
plane, n-dimensional sphere, etc.
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Viscous fluid burning particles
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Russia

Particles of light metals in a flame of the condensed systems burn in the
vapor-phase mode, forming spherical bright is ardent, exceeding diameter
2–3 times in size of the burning particle. The flame around the particles
has brightness irregularities. The burning particle is surrounded only by a
spherical halo, while the contours of the actively burning particle through
the flame are not visible. Between a surface of the condensed particle and a
flame there is a space where concentration of disperse particles is minimum
or equal to zero.

The temperature distribution of the burning particle was deter-mined by
photopyrometry. Temperature of a flame exceeds tempera-ture of a surface
of the particle. Combustion products are condensed from the vapor phase
and form a cloud of daughter particles. The maximum concentration of these
particles in the spherical layer reaches 109 cm−3.

the speed of the particle can be determined when the particle moves in the
flow of combustion products or when it burns out out-side the main flow.
The speed of the particle soaring is small, be-cause the interaction of the
particle with the environment occurs on the outer surface of the flame with
an effective viscosity that is commensurate with the viscosity of the liquid.
A trail is formed be-hind the moving particle, populated by the daughter
particles carried away from the flame. The concentration of particles in the
wake is constant. It was determined in a dynamic mode, both in terms of
ab-sorption and scattering of light by daughter particles. The boundary layer
between the spherical flame and the environment is a two-phase flow with
a decreasing concentration of daughter particles ac-cording to the quadratic
law.
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The dynamics of rigid bodies with internal mechanisms

Evgeny V.Vetchanin1, Evgenia A.Mikishanina2
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2 Chuvash State University, Cheboksary, Russia

This paper is concerned with studying the dynamics of rigid bodies controlled
by internal mechanisms and under the action of external periodic forces. One
of the systems considers

Данная работа посвящена исследованию динамики твердых тел, управ-
ляемых внутренними механизма и подверженных влиянию внешних пе-
риодических сил. Одна из рассмотренных систем описывает вращение
вокруг неподвижной точки твердого тела с переменными моментами
инерции и колеблющимися роторами. Уравнения движения такой систе-
мы могут быть записаны в следующей форме:

Ṁ = M × ω, (1)

где M = I(t)ω + k(t) — момент импульса системы, ω — вектор угловой
скорости тела, I(t) = diag(I1, I2, I3) — тензор инерции тела, k(t) =
(k1, k2, k3)

T sinΩt — гиростатический момент, создаваемый роторами.
Уравнения (1) допускают первый интеграл:

F = M2 = const. (2)

Для системы (1) компоненты тензора инерции задавались следующим
образом:

Ik = ik +
∑

n	=k

(jn +Δjn sinΩt).

Известно, что рассматриваемая система может демонстрировать хаоти-
ческое поведение [1]. Для компьютерного анализа динамики системы (1)
на фиксированном уровне интеграла (2) была выполнена следующая за-
мена переменных:

M1 = F0 cosϕ
√
1− z2, M2 = F0 sinϕ

√
1− z2, M3 = F0z. (3)

Отображения за период для рассматриваемой системы приведены на
рис. 1.
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Рис. 1. Отображения за период для системы. a) i1 = 2, i2 = 3, i3 = 4, j1 = j2 =
j3 = 0, Δj1 = 0.6, Δj2 = 0.2, Δj3 = 0.3, k1 = k2 = k3 = 0, Ω = 3, F0 = 10.
b) i1 = 2, i2 = 6, i3 = 7, j1 = j2 = j3 = 0, Δj1 = 0.6, Δj2 = 0.2, Δj3 = 0.3,
k1 = 0.2, k2 = 0.6, k3 = 1, Ω = 1, F0 = 3

В работе [2] было показано, что в системах подобных (1) при добав-
лении диссипации и накачки энергии могут быть возникать различные
странные аттракторы, обнаруженные в системах Lorenz, Rössler, Newton-
Leipnik, Sprott. В рамках данной работы, нами была рассмотрена система
с параметрическим возбуждением, подобная (1) и описанная в работе [2]:

ẋ =
−σ(x− y)

1− ε sinΩt
, ẏ =

rx− y − (1 − 3ε sinΩt)xy

1 + ε sinΩt
,

ż =
(1 − 3ε sinΩt)xy − bz

1 + ε sinΩt
.

(4)

При σ = 10, r = 28, b = 8/3 и ε = 0 уравнения (4) переходят в извест-
ную систему Лоренца. При построении отображения через период для
системы (4) обнаруживаются неподвижные точки и странные аттракто-
ры. Одним из механизмов возникновения аттракторов в системе (4) яв-
ляется каскад бифуркаций удвоения периода. Фрагмент однопараметри-
ческой бифуркационной диаграммы для неподвижной точки () периода 2
показан на рис. 2.
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Рис. 2. Фрагмент однопараметрической бифуркационной диаграммы для систе-
мы (4) при значениях параметров σ = 10, r = 28, b = 8/3, Ω = 13.
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An approach moving over obstacles
for a wheeled jumping robot

Lyudmila Yu.Vorochaeva1, Sergei I. Savin2, Andrey V.Malchikov1

1 Southwest State University, Kursk, Russian Federation
2 Innopolis University, Innopolis, Russian Federation

The advantage of jumping robots compared to other classes of robotic
devices is their high maneuverability when moving over the rough terrain, as
well as the ability to overcome various obstacles (fences, stairways) [1–3].
This paper focuses on the task of overcoming a staircase with n steps by a
jumping robot described in [4] (Fig. 1).

Fig. 1. Diagram of overcoming a staircase span by a jumping robot

Let the length and the height of each step be equal to l and h corre-
spondingly. We will consider the robot a material point of mass m, which,
to perform the jump, gains the speed υC , that is the speed of separation of
the device from the surface, the velocity vector direction relative to the hori-
zon is given by angle θC . Before jumping, the robot is located at a distance
x from the step

x ∈ [l∗, l], (1)

where l∗ = hctg(θmin
C ) defines the distance within which the robot should

not be located on the step due to the impossibility of making a jump from
there while being limited by the height h of the step and the minimum
angle of inclination of the velocity of separation θmin

C . The characteristics of
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the robot’s jump will include its length L and height H , calculated by the
formulas:

L = υ2
C sin 2θC/g, L ∈ [x+ (n− 1)l, x+ nl− l∗], (2)

H = υ2
Csin

2θC/2g, H ∈ [nh, Hmax], (3)

where g stands for the free fall acceleration, and the distance Hmax is limited
by the height of the staircase ceiling. Overcoming the flight of stairs can
be implemented using a different number of jumps p from 1 to the amount
equaling the number of steps:

p ∈ [pmin, pmax], pmin = 1, pmax = n, (4)

The number of steps, herewith, overleaped in one jump:

N ∈ [Nmin, Nmax], Nmin = 1 at pmax, Nmax = n at pmin. (5)

The distribution of surmountable steps over jumps can be described as fol-
lows:

N1 = (amin + (k − 1)) , k ∈ [1, k∗1 ],

. . .

Np = (amin + (k − 1)) k ∈ [Np−1, k
∗
p] with Np−1 ∈ [N(p−1)min, N(p−1)max],

. . .

Npmax = n−
∑

N1 . . .Npmax−1with Npmax � Npmax−1,

(6)
where amin = 1 denotes the minimum number of steps to be surmounted,

k∗1 =

⎧
⎨

⎩
min(Npmax),

∑
n1 . . . npmax mod (pmax) = 0,

min(Npmax − 1),
∑

n1 . . . npmax mod (pmax) �= 0,
(7)

k∗p =

⎧
⎨

⎩
min(Npmax),

∑
np . . . npmax mod (pmax − p+ 1) = 0,

min(Npmax − 1),
∑

np . . . npmax mod (pmax − p+ 1) �= 0,

(8)
min(Npmax) — the smallest number of steps to be overcome during the
last jump. According to the given formula, the number N1 of the steps
jumped over the first leap can vary from 1 to min(Npmax) or min(Npmax−
1)) depending on the fulfillment of the specified condition. The number
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Np of the overleaped in jump p steps can vary from 1 to min(Npmax) or
min(Npmax − 1) at each value Np−1 of the steps overleaped in the previous
jump. The number min(Npmax) of the steps jumped over in the last jump is
always represented as the difference between the number of steps in a flight
of stairs and the number of steps already overleaped in previous jumps. And
this number cannot be less than the steps jumped over in the previous jump.
While determining the optimal way of overcoming the staircase span, the
problem of minimizing kinetic energy W of the robot at the moment of
separation from the surface can be solved:

min(W) = min(mυ2
C/2). (9)

The concepts and formulas of jumps performed on the steps of the staircase
span introduced here will be further made use of to develop an optimal way
of overcoming it.

The work was carried out within the RFBR project No. 18-31-00075.
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An investigation of motion of a crawling robot with
supports with controllable friction

Lyudmila Yu.Vorochaeva1, Sergei I. Savin2, Andrey S. Yatsun1

1 Southwest State University, Kursk, Russian Federation
2 Innopolis University, Innopolis, Russian Federation

Crawling robots represent a wide class of devices and differ from each
other in the number of links, the type of hinges connecting them, the imple-
mented movements (e.g. caterpillar-like, snake-like, worm-like), etc. [1-4].
In this paper we consider a crawling robot consisting of one link and two
supporting elements with a controlled friction coefficient, moving along a
horizontal rough surface in the plane Oxy (Fig. 1,a). The link of the robot
is a rod with the length l and the mass m. The center of mass of the link is
located at the point of symmetry of the link, denoted as point C. Supporting
elements are set at points O1 and O2 and allow for switching between two
possible values of the friction coefficient: maximal fmax and minimal fmin

[5]. We assume that the value fmax is sufficient for the support to be fixed
on the surface, while when the friction coefficient fmin is observed, the con-
tact element slides along the surface. Electric drives, creating torques M ,
are installed at the support points and allow the link of the robot to rotate
in the horizontal plane relative to the fixed support. Whereby, in the second
support, a sliding friction force Ffr arises.

By alternately controlling the friction coefficient in the contact elements,
as well as intermittently feeding torques to the drives and turning them off,
you can implement the gait of this robot, as shown in Fig. 1,b,c.

Fig. 1. a) A scheme of a crawling robot, b), c) initial positions of the robot’s motion
stages: b) the first stage, c) the second stage

The robot’s locomotion includes two stages. At the first stage the point
O1 is fixed, and the drive set in this support generates torque M is formed
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until the equality ϕ = ϕ01 is true, where ϕ01 –– indicates some given value
of the rotation angle of the robot link, corresponding to the completion of
the first stage. After this, the second stage of the movement begins, point O2

is fixed on the surface, the drive installed in it generates the torque M . The
stage will be terminated when the condition ϕ = −ϕ02 is satisfied, where
the angle value ϕ02 corresponds to the completion of the second stage. Then
the stages are repeated. It should be noted that the values ϕ01 and ϕ02

are determined by the robot control system based on the trajectory along
which the object must move, for example, when ϕ01 = ϕ02 the movement
will occur in a straight line, at ϕ01 > ϕ02 –– counterclockwise rotation, at
ϕ01 < ϕ02 –– clockwise rotation. More explicitly the gait of the robot is
illustrated in Table 1. The differential equation of motion of the robot during
each of the stages is written as:

Jϕ̈ = M − Ffrl, (1)

where J –– stands for the moment of inertia relative to the fixed support
point.

Table 2. Description of the crawling robot gait

Motion O1 Motion O2 fO1 fO2 Termination condition

stage 1 − + fmax fmin ϕ = ϕ01

stage 2 + − fmin fmax ϕ = −ϕ02

Simulation of motion of the robot allows for the identification of the im-
pact on the characteristics of movement of mass-dimensional (the length and
the mass of the link) and control parameters (the value of the control torques
and their change laws), as well as the parameters of the supporting surface
(friction coefficient value fmin, friction force model). As an example of the
simulation results, Fig. 2 represents the range of values of the coefficient
fmin, under which the movement of the robot is possible (area 1) and under
which the object is stationary (area 2) depending on the torqueM , generated
by the drive, for three values of the link mass. The model for this simulation
was described using dimensionless parameters.

The graphs show that as the value of M increases, the maximum permis-
sible value of the friction coefficient fmin increases, under which the robot
will move along the surface. Moreover, the dependence fmin(M) is linear,
the coefficient of inclination of the straight line to the axis of the torques
decreases with the increasing mass of the link. These dependencies can be
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Fig. 2. Diagrams of the areas of fmin(M): a) m = 0.8, b) m = 1, c) m = 1.2, 1 —
the range of values when the movement of the robot is possible, 2 — the range of
values under which the robot is stationary

made use of in the development of laws for controlling the drives of the
device, as well as when selecting materials for support elements.

The work under consideration was carried out within the framework of
the Presidential Grant, application number MK-200.2019.1.

References

[1] Conkur E. S., Gurbuz R. Path Planning Algorithm For Snake-Like Robots //
Information Technology and Control, 2008, vol. 37, no. 2, pp. 159–162.

[2] Lounis D., Spinello D., Gueaieb W., Sarfraz H. Planar kinematics analysis of a
snake-like robot // Robotica, 2014, vol. 32, no. 5, pp. 659–675.

[3] Jatsun S., Vorochaeva L., Yatsun A., Savin S. and Malchikov A. Bio-inspired
adaptive control strategy for a snake-like robot // 19th IEEE Intern. Conf. IC-
STCC, 2015, pp. 273–278.

[4] Zhao X., Dou L., Su Z., Liu N. Study of the Navigation Method for a Snake
Robot Based on the Kinematics Model with MEMS IMU // Sensors, 2018,
vol. 18, no. 3, pp. 879–901.

[5] Vorochaeva L.Yu., Yatsun A. S., Yatsun S. F. Simulation of the motion of a five-
link crawling robot with controlled friction on a surface having obstacles // J. of
Computer and Systems Sciences International, 2017, vol. 56, no. 3, pp. 527—552.

209



Jordan–Kronecker invariants of semidirect sums
of Lie algebras

Konstantin S.Vorushilov

Lomonosov Moscow State University, Moscow, Russia

Hamiltonian systems defined by Euler equations on Lie algebras arise
in various problems in mathematical physics. In 1978, A. S.Mischenko and
A. T. Fomenko presented a so-called argument shift method [2]. This method
can be used to construct a family of polynomial functions in involution with
respect to a Lie-Poisson bracket on a Lie algebra; these functions are exactly
the integrals of such Hamiltonian system. It turns out that these functions
commute with respect to another Poisson bracket on a Lie algebra. It is
natural to ask whether there exists a complete family of polynomials in
involution with respect to both Poisson brackets.

Jordan –Kronecker invariants of a Lie algebra were first introduced by
A.V. Bolsinov and P. Zhang in [1]. By definition, these invariants describe
the canonical block-diagonal decomposition of a pair of skew-symmetric
forms defined by the generic pair of elements of dual Lie algebra with
blocks of Jordan and Kronecker types. A pair of skew-symmetric forms
corresponds to a pair of Poisson brackets mentioned earlier. It was proved
by Bolsinov that the completeness of commutative family of shifts for a Lie
algebra is equivalent to the fact that this Lie algebra is of Kronecker type, i.e.
the canonical decomposition of two forms contains only Kronecker blocks.

For some types of Lie algebras (for example, for semisimple and low-
dimensional Lie algebras), Jordan –Kronecker invariants are known, but for
many interesting cases of Lie algebras this question is open.

The talk will cover the recent developments in this area of research.
In particular, the methods of calculation of Jordan –Kronecker invariants of
semidirect sums of Lie algebras with a commutative ideal will be discussed.

This work was supported by the Russian Science Foundation (project
No.17-11-01303).

References

[1] Bolsinov A.V., Zhang P. Jordan–Kronecker invariants of finite-dimensional Lie
algebras, Transform. Groups 21 (1), 51–86 (2016).

[2] Mischenko A. S., Fomenko A. T. Euler equations on finite-dimensional Lie
groups, Math. USSR Izv. 12 (2), 371–389 (1978).

[3] Vorushilov K. Jordan–Kronecker invariants for semidirect sums defined by
standard representation of orthogonal or symplectic Lie algebras, Lobachevskii
Journal of Mathematics. 38 (6), 1121–1130 (2017).

210



On Chaplygin’s case of the body in a liquid

Hamad M.Yehia

Mathematics Department, Faculty of Science,
Mansoura University, Mansoura, Egypt

Chaplygin discovered this case in 1903 and gave full separation of vari-
ables. It was recently studied by several authors, who studied the topology
of the iso-energy surfaces, bifurcation diagrams and topological classification
of the Liouville tori in its phase space. We give explicit formulas for the
Euler-Poisson variables in terms of Jacobian elliptic functions of time and
also simulations of different types of trajectories of the vertical apex on the
Poisson sphere.
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