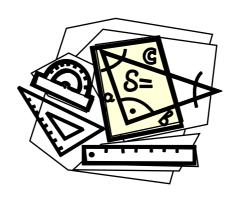
ЛИНЕЙНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. ПРЕДЕЛЫ. РЕШЕНИЕ ТИПОВЫХ РАСЧЕТОВ

Методические указания



МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Федеральное государственное образовательное учреждение высшего профессионального образования «Чувашский государственный университет имени И. Н. Ульянова»

ЛИНЕЙНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. ПРЕДЕЛЫ. РЕШЕНИЕ ТИПОВЫХ РАСЧЕТОВ

Методические указания

УДК 517.1(075.8)

Составители:

В. Г. Агаков, В. П. Бычков, И. И. Ильина, Н. Д. Поляков,

Л. В. Селиверстова, Г. М. Филиппова

Линейная алгебра. Аналитическая геометрия. Пределы. Решение типовых расчетов : метод. указания / сост. В. Г. Агаков, В. П. Бычков, И. И. Ильина и др. Чебоксары: Изд-во Чуваш. ун-та, 2009. 44 с.

Дана методика решения 31 варианта типовых расчетов «Линейная алгебра», «Аналитическая геометрия», «Пределы» по задачнику Кузнецов Л.А. Сборник заданий по высшей математике. Типовые расчеты : для втузов. М.: Высш. шк., 1963. 175 с., а также 25 варианта типового расчета № 1 «Линейная алгебра» по задачнику Алгебра и геометрия / сост. В.Г. Агаков, А.П. Быкова, В.П. Бычков, Н.Д. Поляков. Чебоксары: Изд-во Чуваш. ун-та, 2000. 75 с.

Методические указания окажут существенную помощь студентам в самостоятельной работе по изучению соответствующих вопросов программы.

Для студентов технических специальностей.

Утверждено Методическим советом университета Отв. редактор: канд. физ.-мат. наук В. П. Бычков

Составители:

АГАКОВ Всеволод Георгиевич
БЫЧКОВ Владимир Порфирьевич
ИЛЬИНА Ирина Игоревна
ПОЛЯКОВ Николай Дмитриевич
СЕЛИВЕРСТОВА Людмила Вячеславовна
ФИЛИППОВА Галина Михайловна

Линейная алгебра. Аналитическая геометрия. Пределы. Решение типовых расчетов

Методические указания

Отв. за выпуск Е. В. Федорова Компьютерный набор и верстка В. Г. Сытина

Подписано в печать 07.05.09. Формат 60×84/16. Бумага газетная. Гарнитура Журнальная. Печать оперативная. Усл. печ. л. 2,55. Уч.-изд. л. 2,59. Тираж 500 экз. Заказ № 280.

Издательство Чувашского университета Типография университета 428015 Чебоксары, Московский просп., 15

ЛИНЕЙНАЯ АЛГЕБРА

Справочный материал

Пусть задано множество V. Элементы этого множества называются векторами и обозначаются символами a, \vec{a} , \vec{a} и т.д.

Определение 1. Множество V называется векторным пространством (линейным пространством) над множеством действительных чисел \mathbb{R} , если на V определена операция сложения векторов (a+b) и операция умножения вектора на скаляр (λa) и эти операции удовлетворяют следующим условиям (аксиомам):

- 1) a + b = b + a для любых $a, b \in V$;
- 2) (a + b) + c = a + (b + c) для любых $a, b, c \in V$;
- 3) в V существует нулевой вектор ${\bf 0},$ что ${\bf a}+{\bf 0}={\bf 0}+{\bf a}$ для любого ${\bf a}\in V$:
- 4) для любого $a\in V$ в V существует противоположный вектор $-a\in V$, что a+(-a)=0;
 - 5) $1 \cdot a = a$ для любого $a \in V$;
 - 6) $\alpha(\beta {m a}) = (\alpha \beta) {m a}$ для любых $\alpha, \beta \in \mathbb{R}$ и ${m a} \in V$;
 - 7) $(\alpha + \beta)a = \alpha a + \beta a$ для любых $\alpha, \beta \in \mathbb{R}$ и $a \in V$;
 - 8) $\alpha(\boldsymbol{a}+\boldsymbol{b})=\alpha\boldsymbol{a}+\alpha\boldsymbol{\beta}$ для любых $\alpha\in\mathbb{R}$ и $\boldsymbol{a},\boldsymbol{b}\in V.$

Определение 2. Линейной комбинацией векторов a_1, a_2, \ldots, a_p на V называется любой вектор

$$\boldsymbol{a} = \alpha_1 \boldsymbol{a}_1 + \alpha_2 \boldsymbol{a}_2 + \dots + \alpha_p \boldsymbol{a}_p,$$

где $\alpha_1, \alpha_2, \ldots, \alpha_p$ — какие-нибудь числа из $\mathbb R$.

Определение 3. Система векторов $a_1, a_2, ..., a_p$ называется линейно зависимой, если существуют такие числа $\alpha_1, \alpha_2, ..., \alpha_p$, не равные одновременно нулю, что

$$\alpha_1 \boldsymbol{a}_1 + \alpha_2 \boldsymbol{a}_2 + \dots + \alpha_p \boldsymbol{a}_p = \boldsymbol{0}.$$

Определение 4. Система векторов $a_1, a_2, ..., a_p$ называется линейно независимой, если равенство

$$\alpha_1 \boldsymbol{a}_1 + \alpha_2 \boldsymbol{a}_2 + \dots + \alpha_p \boldsymbol{a}_p = \mathbf{0}$$

выполняется только в случае равенства нулю всех коэффициентов $\alpha_1, \, \alpha_2, \, \dots, \, \alpha_p.$

Определение 5. Базисом векторного пространства V называется любая максимальная линейно независимая система векторов $e_1, e_2, \ldots, e_n \in V$. Число векторов базиса называется размерностью векторного пространства и обозначается $\dim V = n$.

В дальнейшем n-мерное векторное пространство обозначается через V_n .

Для каждого вектора $a \in V_n$ существует разложение по базисным векторам $e_1, e_2, ..., e_n$:

$$a = a_1 e_1 + a_2 e_2 + ... + a_n e_n$$

и это разложение единственно. Коэффициенты разложения a_1 , a_2 , ..., a_n называются координатами вектора $\mathbf{a}(a_1,a_2,\ldots,a_n)$ в базисе \mathbf{e}_1 , \mathbf{e}_2 , ..., \mathbf{e}_n .

Для простоты в дальнейшем рассматривается действительное трехмерное линейное пространство V_3 .

Пусть в векторном пространстве V_3 выбран некоторый фиксированный базис $\boldsymbol{b}=\{\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}$. Тогда любой вектор \boldsymbol{x} однозначно представим своим разложением и координатами в базисе $\boldsymbol{b}=\{\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}$, что записывается как

$$x = x_1 e_1 + x_2 e_2 + x_3 e_3 = (x_1, x_2, x_3)_b = (x_1, x_2, x_3) \in V_3$$

и этой строке взаимно однозначно соответствует столбец координат вектора \boldsymbol{x} в этом базисе, равный

$$X = \boldsymbol{x}^T = \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right)_{\boldsymbol{P}},$$

где

$$oldsymbol{B} = oldsymbol{b}^T = (oldsymbol{e}_1, oldsymbol{e}_2, oldsymbol{e}_2)^T = \left(egin{array}{c} oldsymbol{e}_1 \ oldsymbol{e}_2 \ oldsymbol{e}_3 \end{array}
ight).$$

Пусть в векторном пространстве V_3 выбраны два базиса: $\mathbf{b} = \{e_1, e_2, e_3\}$ — старый базис и $\mathbf{b}' = \{e_1', e_2', e_3'\}$ — новый базис. Тогда каждый из векторов e_i базиса $\mathbf{b} = \{e_1, e_2, e_3\}$ имеет некоторое разложение в базисе $\mathbf{b}' = \{e_1', e_2', e_3'\}$ и, наоборот, каждый из векторов e_i' базиса $\mathbf{b}' = \{e_1', e_2', e_3'\}$ имеет некоторое разложение в базисе $\mathbf{b} = \{e_1, e_2, e_3\}$. Пусть каждый из векторов e_i' базиса $\mathbf{b}' = \{e_1', e_2', e_3'\}$ представлен в виде разложения по

векторам базиса $b = \{e_1, e_2, e_3\}$:

$$m{e}_i' = t_{1i}m{e}_1 + t_{2i}m{e}_2 + t_{3i}m{e}_3 \quad \Leftrightarrow \quad m{E}_i = \left(egin{array}{c} t_{1i} \\ t_{2i} \\ t_{3i} \end{array}
ight)_{m{B}}.$$

Следовательно, базис $oldsymbol{b}' = \{e_1', e_2', e_3'\}$ представится в столбцовом виде как

$$B' = \begin{pmatrix} e'_1 \\ e'_2 \\ e'_3 \end{pmatrix} = \begin{pmatrix} t_{11} \\ t_{12} \\ t_{13} \end{pmatrix} e_1 + \begin{pmatrix} t_{21} \\ t_{22} \\ t_{23} \end{pmatrix} e_2 + \begin{pmatrix} t_{31} \\ t_{32} \\ t_{33} \end{pmatrix} e_3 =$$

$$= \begin{pmatrix} t_{11} & t_{21} & t_{31} \\ t_{12} & t_{22} & t_{32} \\ t_{13} & t_{23} & t_{33} \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix} = (T_{\boldsymbol{B} \to \boldsymbol{B}'})^T \cdot \boldsymbol{B},$$

где матрица $T_{B\to B'}$ — матрица перехода от старого базиса к новому базису. При этом формулы преобразования координат при переходе от старого базиса к новому базису примут вид X'=TX, где матрица T есть матрица перехода от базиса $b'=\{e_1',e_2',e_3'\}$ к базису $b=\{e_1,e_2,e_3\}$. Поэтому $T=T_{B'\to B}=(T_{B\to B'})^{-1}$.

Определение 6. Линейным преобразованием (оператором) в линейном пространстве V_3 называется всякое отображение $L\colon V_3\to V_3$, обладающее свойствами

$$L(\lambda x) = \lambda L(x), \quad L(x + y) = L(x) + L(y).$$

(подробнее см. [1, с. 193]).

Пусть L — линейный оператор в V_3 и ${m \beta} = \{{m e}_1, {m e}_2, {m e}_3\}$ — фиксированный базис. Пусть

$$L(\boldsymbol{e}_k) \quad \Leftrightarrow \quad \left(\begin{array}{c} \alpha_{1l} \\ \alpha_{2k} \\ \alpha_{3k} \end{array} \right), \quad k = 1, 2, 3.$$

Матрица

$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix}$$

называется матрицей оператора L в базисе β , ее заданием полностью определяется оператор L, а именно, если y=L(x), то $Y=A\cdot X$, где X и Y — столбцы координат векторов x и y в базисе β .

Множество ${\rm Im}\, L=\{L({\bm x}):\ {\bm x}\in V_3\}$ называется образом оператора L, множество ${\rm Ker}\, L=\{{\bm x}:\ {\bm x}\in V_3, L({\bm x})={\bm 0}\}$ называется

ядром оператора L. Эти множества являются линейными под-пространствами пространства V_3 .

Пусть A и A' — матрицы оператора L в базисах $m{\beta}$ и $m{\beta}'$, тогда $A'=T^{-1}AT$, где $T=T_{m{\beta} opm{\beta}'}.$

Собственные числа и собственные векторы линейного оператора изложены в [1, с. 198].

Способы приведения квадратичных форм к каноническому виду изложены в [1, с. 208].

Решения заданий 31 варианта

Задание 1.31. Образует ли линейное пространство множество всех дифференцируемых функций $a=f(t),\ b=g(t),\ в$ котором определена сумма любых двух элементов $f(t)\cdot g(t)$ и произведение $\alpha\cdot f(t)$?

Решение. Если убрать из области определения функций нули этих функций, то для каждой дифференцируемой функции f(t) функция 1/f(t) будет также дифференцируемой. Проверим выполнимость аксиом линейного пространства:

- 1) $f(t) \cdot g(t) = g(t) \cdot f(t)$ (аксиома выполняется);
- 2) $f(t)(g(t) + \psi(t)) = f(t)g(t) + f(t)\psi(t)$ (аксиома выполняется);
- 3) за нулевой вектор возьмем функцию, тождественно равную единице: $f(t)\equiv 1$ (аксиома выполняется);
- 4) за противоположный вектор возьмем функцию 1/f(t) (аксиома выполняется);
 - 5) $1 \cdot f(t) = f(t)$ (аксиома выполняется);
 - 6) $\alpha(\beta f(t)) = (\alpha \beta) f(t)$ (аксиома выполняется);
 - 7) $(\alpha + \beta)f(t) = \alpha f(t) + \beta f(t)$ (аксиома выполняется);
 - 8) $\alpha(f(t)\cdot g(t)) \neq \alpha f(t)\cdot \alpha g(t)$ (аксиома не выполняется).

Не все аксиомы векторного пространства справедливы, следовательно, множество дифференцируемых функций f(t) не образует векторное пространство относительно определенных в примере операций.

Ответ: не образует.

Задание 2.31. Исследовать на линейную зависимость систему векторов $\boldsymbol{a}=(-2;1;5),\,\boldsymbol{b}=(4;-3;0),\,\boldsymbol{c}=(0;-1;10).$

Решение. Необходимым и достаточным условием линейной зависимости трех векторов в 3-мерном пространстве является равенство нулю их смешанного произведения. В нашем случае

$$(abc) = \begin{vmatrix} -2 & 1 & 5 \\ 4 & -3 & 0 \\ 0 & -1 & 10 \end{vmatrix} = 0,$$

т.е. система векторов линейно зависима

Omsem: система векторов a, b, c линейно зависима.

Задание 3.31. Найти общее решение системы уравнений и проанализировать его структуру, т.е. найти какой-нибудь базис и определить размерность линейного пространства решений системы

$$\begin{cases} x_1 - x_2 + x_3 - 2x_4 + x_5 = 0, \\ x_1 + x_2 - 2x_3 - x_4 + 2x_5 = 0, \\ x_1 - 3x_2 + 4x_3 - 3x_4 = 0. \end{cases}$$

Решение. Определим ранг системы, подвергнув матрицу из коэффициентов эквивалентным преобразованиям:

$$\begin{pmatrix} 1 & -1 & 1 & -2 & 1 \\ 1 & 1 & -2 & -1 & 2 \\ 1 & -3 & 4 & -3 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & -1 & 1 & -2 & 1 \\ 0 & 2 & -3 & 1 & 1 \\ 0 & -2 & 3 & -1 & -1 \end{pmatrix} \Rightarrow$$
$$\Rightarrow \begin{pmatrix} 1 & -1 & 1 & -2 & 1 \\ 0 & 2 & -3 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & -1 & 1 & -2 & 1 \\ 0 & 2 & -3 & 1 & 1 \end{pmatrix}.$$

Из последней матрицы следует, что данная система линейных уравнений равносильна системе

$$\begin{cases} x_1 - x_2 + x_3 - 2x_4 + x_5 = 0, \\ 2x_2 - 3x_3 + x_4 + x_5 = 0. \end{cases}$$

Пусть неизвестные x_1 , x_2 — базисные и x_3 , x_4 , x_5 — свободные неизвестные. Выразим базисные неизвестные через свободные:

$$\begin{cases} x_1 = \frac{1}{2}x_3 + \frac{3}{2}x_4 - \frac{3}{2}x_5, \\ x_2 = \frac{3}{2}x_3 - \frac{1}{2}x_4 - \frac{1}{2}x_5. \end{cases}$$

Общее решение системы имеет вид

$$\boldsymbol{x} = \left(\frac{1}{2}t_1 + \frac{3}{2}t_2 - \frac{3}{2}t_3; \frac{3}{2}t_1 - \frac{1}{2}t_2 - \frac{1}{2}t_3; t_1; t_2; t_3\right),$$

где $x_3=t_1,\ x_4=t_2,\ x_5=t_3$ ($t_1,\ t_2,\ t_3$ — произвольные действительные числа).

Так как ранг системы r=2, то размерность пространства решений m=n-r=5-2=3. Одним из базисов пространства решений является система векторов $\boldsymbol{x}_1=\left(\frac{1}{2};\frac{3}{2};1;0;0\right)$, $\boldsymbol{x}_2=\left(\frac{3}{2};-\frac{1}{2};0;1;0\right)$, $\boldsymbol{x}_3=\left(-\frac{3}{2};-\frac{1}{2};0;0;1\right)$.

Ответ: общее решение системы линейных уравнений

$$\boldsymbol{x} = \left(\frac{1}{2}t_1 + \frac{3}{2}t_2 - \frac{3}{2}t_3; \frac{3}{2}t_1 - \frac{1}{2}t_2 - \frac{1}{2}t_3; t_1; t_2; t_3\right),$$

где $t_1,\ t_2,\ t_3$ — любые действительные числа; базис решения системы

$$\left(\frac{1}{2}; \frac{3}{2}; 1; 0; 0\right), \quad \left(\frac{3}{2}; -\frac{1}{2}; 0; 1; 0\right), \quad \left(-\frac{3}{2}; -\frac{1}{2}; 0; 0; 1\right);$$

размерность линейного пространства решений 3.

Задание 4.31. Найти координаты вектора x=(1;10;10) в базисе $(e_1',e_2',e_3')=\beta'$, если он задан в базисе $(e_1,e_2,e_3)=\beta$ и $e_1'=e_1+e_2+11e_3,\ e_2'=\frac{11}{10}e_1-e_2,\ e_3'=-e_1+e_2+e_3.$

Решение. Матрица перехода от старого базиса к новому имеет вид

$$T_{\beta \to \beta'} = \begin{pmatrix} 1 & \frac{11}{10} & -1 \\ 1 & -1 & 1 \\ 11 & 0 & 1 \end{pmatrix}.$$

Определитель $|T_{\beta \to \beta'}|$ матрицы перехода от нового базиса к старому равен -1. Тогда матрица перехода от нового базиса к старому базису

$$T_{\beta'\to\beta} = (T_{\beta\to\beta'})^{-1} =$$

$$= \frac{1}{-1} \begin{pmatrix} -1 & -\frac{11}{10} & \frac{1}{10} \\ 10 & 12 & -2 \\ 11 & \frac{121}{10} & -\frac{21}{10} \end{pmatrix} = \frac{1}{10} \begin{pmatrix} 10 & 11 & -1 \\ -100 & -120 & 20 \\ -110 & -121 & 21 \end{pmatrix}.$$

Отсюда

$$X' = T_{\beta' \to \beta} X = \frac{1}{10} \begin{pmatrix} 10 & 11 & -1 \\ -100 & -120 & 20 \\ -110 & -121 & 21 \end{pmatrix} \begin{pmatrix} 1 \\ 10 \\ 10 \end{pmatrix} = \frac{1}{10} \begin{pmatrix} 110 \\ -1100 \\ -1110 \end{pmatrix} = \begin{pmatrix} 11 \\ -110 \\ -111 \end{pmatrix}.$$

Omsem: x = (11; -110; -111).

Задание 5.31. Пусть $\boldsymbol{x}=(x_1;x_2;x_3)$. Являются ли линейными следующие преобразования: $A\boldsymbol{x}=(x_1^2;x_1-x_3;x_2+x_3),$ $B\boldsymbol{x}=(1;x_1-x_3;x_2+x_3),$ $C\boldsymbol{x}=(x_1;x_1-x_3;x_2+x_3)$?

Pewenue. Преобразование L является линейным преобразованием, если выполняются следующие аксиомы:

- 1) L(x + y) = L(x) + L(y) для любых векторов x, y;
- 2) $L(\alpha x) = \alpha L(x)$ для любого вектора x и любого действительного числа $\alpha.$

Проверим аксиомы для преобразования A:

$$A(\mathbf{x} + \mathbf{y}) = ((x_1 + y_1)^2; x_1 + y_1 - x_3 - y_3; x_2 + y_2 + x_3 + y_3);$$

$$A(\mathbf{x}) + A(\mathbf{y}) = (x_1^2 + y_1^2; x_1 - x_3 + y_1 - y_3; x_2 + x_3 + y_2 + y_3);$$

$$A(\mathbf{x} + \mathbf{y}) \neq A(\mathbf{x}) + A(\mathbf{y}).$$

Следовательно, A не является линейным преобразованием.

Проверим аксиомы для преобразования В:

$$B(\mathbf{x} + \mathbf{y}) = (1; x_1 + y_1 - x_3 - y_3; x_2 + y_2 + x_3 + y_3);$$

$$B(\mathbf{x}) + B(\mathbf{y}) = (2; x_1 - x_3 + y_1 - y_3; x_1 + x_3 + y_1 + y_3);$$

$$B(\mathbf{x} + \mathbf{y}) \neq B(\mathbf{x}) + B(\mathbf{y}).$$

Следовательно, B не является линейным преобразованием. Проверим аксиомы для преобразования C:

$$C(\mathbf{x} + \mathbf{y}) = (x_1 + y_1; x_2 + y_2 - x_3 - y_3; x_2 + y_2 + x_3 + y_3);$$

$$C(\mathbf{x}) + C(\mathbf{y}) = (x_1 + y_1; x_2 - x_3 + y_2 - y_3; x_2 + x_3 + y_2 + y_3);$$

$$C(\mathbf{x} + \mathbf{y}) = C(\mathbf{x}) + C(\mathbf{y}).$$

$$C(\alpha \mathbf{x}) = (\alpha x_1; \alpha(x_1 - x_3); \alpha(x_2 + x_3)) = \alpha(x_1; x_1 - x_3; x_1 + x_3) = \alpha C(\mathbf{x}).$$

Обе аксиомы линейного преобразования выполняются, следовательно, C — линейное преобразование.

Omsem: A, B не являются линейными преобразованиями, C — линейное преобразование.

Задание 6.31. Пусть $\boldsymbol{x}=(x_1;x_2;x_3),$ $A\boldsymbol{x}=(x_2-x_3;x_1;x_1+x_3),$ $B\boldsymbol{x}=(x_2;2x_3;x_1).$ Найти $(B(2A+B))\boldsymbol{x}.$

Peшение. Линейное преобразование A задается матрицей

$$M_A = \left(\begin{array}{ccc} 0 & 1 & -1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{array}\right),$$

линейное преобразование В задается матрицей

$$M_B = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 1 & 0 & 0 \end{array}\right).$$

Найдем матрицу линейного преобразования B(2A+B):

$$M_{B(2A+B)} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 1 & 0 & 0 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} 0 & 2 & -2 \\ 2 & 0 & 0 \\ 2 & 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 1 & 0 & 0 \end{pmatrix} \end{bmatrix} =$$

$$= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 3 & -2 \\ 2 & 0 & 2 \\ 3 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 2 \\ 6 & 0 & 4 \\ 0 & 3 & -2 \end{pmatrix}.$$

Отсюда $(B(2A+B))\mathbf{x} = (2x_1 + 2x_3; 6x_1 + 4x_3; 3x_2 - 2x_3).$

Omeem: $(B(2A+B))x = (2x_1 + 2x_3; 6x_1 + 4x_3; 3x_2 - 2x_3).$

Задание 7.31. Найти вид матрицы A в базисе $m{\beta}'=(e_1',e_2',e_3')$, где $e_1'=e_1-e_2+e_3,\,e_2'=-e_1+e_2-2e_3,\,e_3'=-e_1+2e_2+e_3,$ если она задана в базисе $m{\beta}=(e_1,e_2,e_3)$ и

$$A = \left(\begin{array}{rrr} 0 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & -1 & 1 \end{array}\right).$$

Решение.

$$T = T_{\beta \to \beta'} = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 2 \\ 1 & -2 & 1 \end{pmatrix}.$$

Определитель матрицы T равен 1. Тогда

$$T^{-1} = \begin{pmatrix} 5 & 3 & 1 \\ 3 & 2 & -1 \\ 1 & 1 & 0 \end{pmatrix},$$

$$AT = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 2 \\ 1 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 3 \\ 0 & -1 & 2 \\ 1 & -4 & 2 \end{pmatrix}.$$

Отсюда

$$A^{1} = T^{-1}AT =$$

$$= \begin{pmatrix} 5 & 3 & 1 \\ 3 & 2 & -1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 & 3 \\ 0 & -1 & 2 \\ 1 & -4 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -12 & 23 \\ -1 & -1 & 11 \\ 0 & -2 & 5 \end{pmatrix}.$$

$$\textit{Omsem:} \begin{pmatrix} 1 & -12 & 23 \\ -1 & -1 & 11 \\ 0 & -2 & 5 \end{pmatrix}.$$

Задание 8.31. Доказать линейность, найти матрицу, область значений и ядро оператора проектирования на плоскость $x-\sqrt{3}z=0.$

Pewenue. Оператор P_{α} проектирования на плоскость α имеет вид

$$P_{\alpha}(\boldsymbol{x}) = \boldsymbol{x} - \frac{(\boldsymbol{n}, \boldsymbol{x})}{|\boldsymbol{n}|^2} \boldsymbol{n},$$

где $\mathbf{n} = (1; 0; -\sqrt{3}), |\mathbf{n}| = 2.$

Линейность следует из того, что

$$egin{aligned} P_{lpha}(oldsymbol{x}+oldsymbol{y}) &= oldsymbol{x}+oldsymbol{y}-rac{(oldsymbol{n},oldsymbol{x}+oldsymbol{y}-rac{(oldsymbol{n},oldsymbol{x})}{|oldsymbol{n}|^2}oldsymbol{n} &= P_{lpha}(oldsymbol{x})+P_{lpha}(oldsymbol{y}). \end{aligned}$$

Очевидно и

$$P_{\alpha}(\lambda \boldsymbol{x}) = \lambda P_{\alpha}(\boldsymbol{x}).$$

Оператор однозначно определяется матрицей, составленной из столбцов координат, образов базиса b = (i; j; k):

$$P_{\alpha}(i) = i - \frac{(n, i)}{|n|^2} (i - \sqrt{3}k) = i - \frac{1}{4} (i - \sqrt{3}k) = \frac{3}{4}i + \frac{\sqrt{3}}{4}k.$$

Аналогично,

$$P_{\alpha}(\boldsymbol{j}) = \boldsymbol{j}, \quad P_{\alpha}(\boldsymbol{k}) = \frac{\sqrt{3}}{4}\boldsymbol{i} + \frac{1}{4}\boldsymbol{k}.$$

Тогда матрица оператора проектирования

$$A = \left(\begin{array}{ccc} \frac{3}{4} & 0 & \frac{\sqrt{3}}{4} \\ 0 & 1 & 0 \\ \frac{\sqrt{3}}{4} & 0 & \frac{1}{4} \end{array}\right).$$

Матрица A вырожденная, ее ранг равен 2, т.к. ее базисный минор

 $\left|\begin{array}{cc} \frac{3}{4} & 0\\ 0 & 1 \end{array}\right| \neq 0.$

Отсюда ранг оператора P_{α} равен 2. За базис может быть выбран любой из базисов системы столбцов матрицы A. Найдем образ:

$$\operatorname{Im} P_{\alpha} = \{P_{\alpha}(\boldsymbol{x})\} = \{A\boldsymbol{x}\} = \left\{ \left(\frac{3}{4}x + \frac{\sqrt{3}}{4}z; y; \frac{\sqrt{3}}{4}x + \frac{1}{4}z \right) \right\}.$$

Ядро преобразования $\operatorname{Ker} P_{\alpha}$ совпадает с подпространством решений однородной системы $P_{\alpha} \pmb{x} = \pmb{0}$:

$$\left\{ \begin{array}{l} \frac{3}{4}x+\frac{\sqrt{3}}{4}z=0,\\ \frac{\sqrt{3}}{4}x+\frac{1}{4}z=0,\ y=0 \end{array} \right.$$
 или
$$\left\{ \begin{array}{l} \sqrt{3}x+z=0,\\ y=0. \end{array} \right.$$

Отсюда

$$\operatorname{Ker} P_{\alpha} = \{(x; 0; -\sqrt{3}x)\}, \quad \dim(\operatorname{Ker} P_{\alpha}) = 1.$$

Ответ:

$$\begin{pmatrix} \frac{3}{4} & 0 & \frac{\sqrt{3}}{4} \\ 0 & 1 & 0 \\ \frac{\sqrt{3}}{4} & 0 & \frac{1}{4} \end{pmatrix}, \quad \operatorname{Im} P_{\alpha} = \left\{ \left(\frac{3}{4} x + \frac{\sqrt{3}}{4} z; y; \frac{\sqrt{3}}{4} x + \frac{1}{4} z \right) \right\},$$

$$\operatorname{Ker} P_{\alpha} = \left\{ (x; 0; -\sqrt{3} x) \right\}.$$

Задание 9.31. Найти собственные значения и собственные

векторы матрицы $A = \left(\begin{array}{ccc} 4 & -3 & 3 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array} \right).$

Решение

$$\det(A - \lambda E) = \begin{vmatrix} 4 - \lambda & -3 & 3 \\ 1 & 2 - \lambda & 1 \\ 1 & 1 & 2 - \lambda \end{vmatrix} = \begin{vmatrix} 4 - \lambda & -3 & 3 \\ 0 & 1 - \lambda & \lambda - 1 \\ 1 & 1 & 2 - \lambda \end{vmatrix} =$$

$$= (\lambda - 1) \begin{vmatrix} 4 - \lambda & -3 & 3 \\ 0 & -1 & 1 \\ 1 & 1 & 2 - \lambda \end{vmatrix} = (\lambda - 1) \begin{vmatrix} 4 - \lambda & 3 & 6 \\ 0 & -1 & 0 \\ 1 & 1 & 3 - \lambda \end{vmatrix} =$$

$$= -(\lambda - 1) [(\lambda - 3)(\lambda - 4) + 6] = -(\lambda - 1)(\lambda^2 - 7\lambda + 18) = 0.$$

Отсюда получаем множество собственных векторов, отвечающих собственному значению $\lambda=1$: $\boldsymbol{x}=(0;\alpha;-\alpha)$, где $\alpha\in\mathbb{R}$, $\alpha\neq 0$.

Omsem: $\lambda = 1$; $\mathbf{x} = (0; \alpha; -\alpha)$.

Задание 10.31. Привести квадратичную форму

$$x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + 3x_3^2$$

к каноническому виду методом Лагранжа.

Решение. Сгруппируем слагаемые, содержащие x_1 , и выделим полный квадрат:

$$x_1^2 + 2x_1x_2 + 2x_1x_3 = (x_1 + x_2 + x_3)^2 - 2x_2x_3 - x_2^2 - x_3^2$$

Сделаем замену переменных

$$\begin{cases} x_1' = x_1 + x_2 + x_3, \\ x_2' = x_2, \\ x_3' = x_3 \end{cases}$$

и форма получит вид

$$(x_1')^2 + (x_2')^2 + 2(x_3')^2 + 2x_2'x_3'.$$

Сгруппируем слагаемые, содержащие x_2^\prime , и выделим полный квадрат:

$$(x_2')^2 + 2x_2'x_3' = (x_2' + x_3')^2 - (x_3')^2.$$

Сделаем замену

$$\begin{cases} x_1'' = x_1', \\ x_2'' = x_2' + x_3', \\ x_3'' = x_3'. \end{cases}$$

Тогда форма примет канонический вид

$$(x_1'')^2 + (x_2'')^2 + (x_3'')^2$$
.

Omeem: $(x_1'')^2 + (x_2'')^2 + (x_3'')^2$.

Задание 11.31. Привести квадратичную форму

$$-3x_1^2 + 9x_2^2 + 3x_3^2 + 2x_1x_2 + 8x_2x_3 + 4x_2x_3.$$

к каноническому виду ортогональным преобразованием.

Решение. Запишем матрицу, задающую данную квадратичную форму:

$$A = \left(\begin{array}{rrr} -3 & 1 & 4\\ 1 & 9 & 2\\ 4 & 2 & 3 \end{array}\right).$$

Ее собственные значения найдем из уравнения

$$\left|\begin{array}{ccc|c} 3-\lambda & 1 & 4 \\ 1 & 9-\lambda & 2 \\ 4 & 2 & 3-\lambda \end{array}\right|=0 \quad \text{или} \quad \lambda^3-9\lambda^2-30\lambda+200=0.$$

Корни $\lambda_1=10$, $\lambda_2=-5$, $\lambda_3=4$. Отсюда имеем, что каноническим видом данной квадратичной формы в ортогональном базисе из собственных векторов линейного преобразования, заданного матрицей A, является выражение $10y_1^2-5y_2^2+4y_3^2$.

Omeem: $10y_1^2 - 5y_2^2 + 4y_3^2$

Задание 12.31. Исследовать кривую второго порядка

$$x^2 + y^2 - 4xy + 4x - 2y + 1 = 0$$

и построить ее.

Peшение. Матрица квадратичной формы x^2+y^2-4xy имеет вид

$$A = \left(\begin{array}{cc} 1 & -2 \\ -2 & 1 \end{array} \right).$$

Найдем ее собственные значения из уравнения

$$\begin{vmatrix} 1-\lambda & -2 \\ -2 & 1-\lambda \end{vmatrix} = \lambda^2 - 2\lambda - 3 = 0;$$

имеем $\lambda_1=-1,\ \lambda_2=3.$ Собственные векторы e_1 и e_2 , соответствующие этим собственным значениям, найдутся из условий $Ae_1=-e_1,\ Ae_2=3e_2$ или, в координатной форме,

$$\left\{ \begin{array}{l} x_{\boldsymbol{e}_1} - 2y_{\boldsymbol{e}_1} = -x_{\boldsymbol{e}_1}, \\ -2x_{\boldsymbol{e}_1} + y_{\boldsymbol{e}_1} = -y_{\boldsymbol{e}_1}, \end{array} \right. \left\{ \begin{array}{l} x_{\boldsymbol{e}_2} - 2y_{\boldsymbol{e}_2} = 3x_{\boldsymbol{e}_2}, \\ -2x_{\boldsymbol{e}_2} + y_{\boldsymbol{e}_2} = 3y_{\boldsymbol{e}_2}, \end{array} \right. \left\{ \begin{array}{l} \boldsymbol{e}_1 = (x_{\boldsymbol{e}_1}, y_{\boldsymbol{e}_1}), \\ \boldsymbol{e}_2 = (x_{\boldsymbol{e}_2}, y_{\boldsymbol{e}_2}). \end{array} \right.$$

Отсюда видно, что за собственные векторы симметрического линейного преобразования, заданного матрицей A, можно взять единичные векторы

$$m{e}_1 = \left(egin{array}{c} rac{1}{\sqrt{2}} \ rac{1}{\sqrt{2}} \end{array}
ight), \quad m{e}_2 = \left(egin{array}{c} rac{1}{\sqrt{2}} \ -rac{1}{\sqrt{2}} \end{array}
ight), \quad m{e}_1 \perp m{e}_2.$$

Переход к этим векторам как к главным обеспечивается поворотом осей координат на угол $\varphi=\pi/4$. Связь старых координат с новыми имеет вид

$$x = x'\cos\varphi - y'\sin\varphi = x'\frac{1}{\sqrt{2}} - y'\frac{1}{\sqrt{2}},$$
$$y = x'\sin\varphi + y'\cos\varphi = x'\frac{1}{\sqrt{2}} + y'\frac{1}{\sqrt{2}}.$$

Подставив эти уравнения в исходное и выделив полный квадрат, получим

$$3\left(y' - \frac{1}{\sqrt{2}}\right)^2 - \left(x' - \frac{1}{\sqrt{2}}\right)^2 = 0; \quad \begin{cases} x'' = x' - \frac{1}{\sqrt{2}}, \\ y'' = y' - \frac{1}{\sqrt{2}}. \end{cases}$$

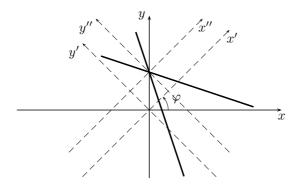


Рис. 1

Тогда $3(y'')^2-(x'')^2=0$. Это уравнение определяет пару действительных пересекающихся прямых $y''=\frac{1}{\sqrt{3}}x''$, $y''=-\frac{1}{\sqrt{3}}x''$ (рис. 1).

Omeem:
$$y'' = \frac{1}{\sqrt{3}}x''$$
, $y'' = -\frac{1}{\sqrt{3}}x''$.

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

Справочный материал

Два ненулевых вектора из V_3 коллинеарны тогда и только тогда, когда один из другого получается умножением на скаляр.

Три вектора компланарны, если после приведения их к общему началу они лежат в одной плоскости.

Всякий вектор $x \in V_3$ может быть однозначно разложен по любой тройке некомпланарных векторов p, q, r, т.е. существует тройка чисел x_1, x_2, x_3 такая, что

$$\boldsymbol{x} = x_1 \boldsymbol{p} + x_2 \boldsymbol{q} + x_3 \boldsymbol{r},$$

где числа $x_1,\ x_2,\ x_3$ называются коор ∂ инатами вектора x в базисе $p,\ q,\ r.$

Линейным операциям над векторами соответствуют линейные операции над координатами, и потому, например, последнее векторное равенство можно заменить на систему линейных уравнений относительно неизвестных x_1, x_2, x_3 , а условие коллинеарности есть условие пропорциональности координат.

Определение 1. Скалярным произведением двух векторов a и b называется число c, обозначаемое $c = a \cdot b$ и равное произведению модулей данных векторов на косинус угла между ними:

$$a \cdot b = |a| \cdot |b| \cdot \cos(\widehat{a, b}).$$

Если векторы даны своими координатами $\boldsymbol{a}(a_x,a_y,a_z)$, $\boldsymbol{b}(b_x,b_y,b_z)$, т.е. $\boldsymbol{a}=a_x\boldsymbol{i}+a_y\boldsymbol{j}+a_z\boldsymbol{k}$, $\boldsymbol{b}=b_x\boldsymbol{i}+b_y\boldsymbol{j}+b_z\boldsymbol{k}$, то скалярное произведение равно

$$\mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z b_z.$$

Определение 2. Векторным произведением векторов a и b

называется вектор c, обозначаемый $c = a \times b$, который удовлетворяет следующим трем условиям:

- 1) $|c| = |a| \cdot |b| \cdot \sin(\widehat{a,b});$
- 2) $c \perp a$, $c \perp b$;
- 3) тройка a, b, c правая.

Векторное произведение векторов $a(a_x, a_y, a_z)$ и $b(b_x, b_y, b_z)$ выражается через координаты следующим образом:

$$egin{aligned} oldsymbol{a} imes oldsymbol{b} = egin{bmatrix} oldsymbol{i} & oldsymbol{j} & oldsymbol{k} \ a_x & a_y & a_z \ b_x & b_y & b_z \ \end{bmatrix} = \left(egin{bmatrix} a_y & a_z \ b_y & b_z \ \end{bmatrix}, - egin{bmatrix} a_x & a_z \ b_x & b_z \ \end{bmatrix}, egin{bmatrix} a_x & a_y \ b_x & b_y \ \end{bmatrix}
ight). \end{aligned}$$

Определение 3. Смешанным произведением векторов a, b, c называется число $(a \times b) \cdot c$, которое выражается через координаты данных векторов следующим образом:

$$egin{aligned} egin{aligned} egin{aligned} a_x & a_y & a_z \ b_x & b_y & b_z \ c_x & c_y & c_z \end{aligned} \end{aligned}.$$

Если векторы a, b, c компланарны, то abc=0, т.к. модуль числа abc равен объему параллелепипеда, построенного на этих векторах.

Общее уравнение плоскости имеет вид

$$Ax + By + Cz + D = 0,$$

где A, B, C, D — заданные числа, причем $A^2 + B^2 + C^2 > 0$.

Вектор n=(A;B;C), перпендикулярный данной плоскости, называется *нормальным* и определяет ориентацию плоскости в пространстве относительно системы координат.

Общее уравнение прямой в пространстве задается как

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0, \\ A_2x + B_2y + C_2z + D_2 = 0, \end{cases}$$

где $\mathbf{n}_1 = (A_1; B_1; C_1), \ \mathbf{n}_2 = (A_2; B_2; C_2), \ \mathbf{n}_1 \times \mathbf{n}_2 \neq \mathbf{0}.$

Каноническое уравнение прямой, проходящей через точку $M_0(x_0;y_0;z_0)$ параллельно направляющему вектору ${\pmb a}=(m;n;p)$, записывается в виде

$$\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}.$$

Параметрическое уравнение прямой получается, если приравнять последние три равенства параметру t и разрешить каждое из полученных уравнений относительно $x,\,y,\,z$:

$$\begin{cases} x = x_0 + mt, \\ y = y_0 + nt, \\ z = z_0 + pt. \end{cases}$$

Расстояние d от точки $M_0(x_0; y_0; z_0)$ до плоскости, заданной уравнением Ax + By + Cz + D = 0, вычисляется по формуле

$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

Условие перпендикулярности плоскостей:

$$n_1 \cdot n_2 = 0$$
 или $A_1 A_2 + B_1 B_2 + C_1 C_2 = 0$.

Условие параллельности плоскостей:

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2}.$$

Решения заданий 31 варианта

Задание 1.31. Написать разложение вектора $\boldsymbol{x}=(15;-20;-1)$ по векторам $\boldsymbol{p}=(0;2;1), \, \boldsymbol{q}=(0;1;-1), \, \boldsymbol{r}=(5;-3;2).$

Решение. Ищем такие числа α , β и γ , что имеет место

$$\boldsymbol{x} = \alpha \boldsymbol{p} + \beta \boldsymbol{q} + \gamma \boldsymbol{r}.$$

В координатной форме будем иметь систему

$$\begin{cases} 5\gamma = 15, \\ 2\alpha + \beta - 3\gamma = -20, \\ \alpha - \beta + 2\gamma = -1, \end{cases}$$

которая имеет единственное решение (-6;1;3), т.е.

$$x = -6p + q + 3r.$$

Ответ: x = (-6; 1; 3).

Задание 2.31. Коллинеарны ли векторы $c_1 = 4a - 3b$ и $c_2 = 9b - 12a$, построенные на векторах a = (-1; 2; 8) и b = (3; 7; -1)?

Решение. Зная, что линейной комбинации векторов соответствует линейная комбинация координат, найдем координаты векторов c_1 и c_2 . Имеем $c_1=(-13;-13;35)$, $c_2=(39;39;-105)$. Видим, что координаты векторов c_1 и c_2 пропорциональны:

$$-\frac{13}{39} = -\frac{13}{39} = -\frac{35}{105} = -\frac{1}{3},$$

т.е. векторы \boldsymbol{c}_1 и \boldsymbol{c}_2 коллинеарны.

Omsem: векторы c_1 и c_2 коллинеарны.

Задание 3.31. Найти косинус угла между векторами \overline{AB} и \overline{AC} , если A(-2;4;-6), B(0;2;-4), C(-6;8;-10).

Решение. Найдем векторы \overline{AB} и \overline{AC} , вычитая из координат конца координаты начала. Имеем $\overline{AB}=(2;-2;2)$, $\overline{AC}=(-4;4;-4)$. Отсюда видно, что векторы противоположно направлены, т.е. угол между ними равен π , что также получаем, пользуясь формулой

$$\cos \varphi = \frac{\overline{AB} \cdot \overline{AC}}{|\overline{AB}| \cdot |\overline{AC}|} = \frac{-8 - 8 - 8}{2\sqrt{3} \cdot 4\sqrt{3}} = -1, \quad \varphi = \pi.$$

Omeem: $\cos \varphi = -1$.

Задание 4.31. Вычислить площадь параллелограмма, построенного на векторах a=3p+2q, b=2p-q, если |p|=4, |q|=3, $(\widehat{p,q})=\frac{3}{4}\pi$.

Решение.

$$\boldsymbol{a} \times \boldsymbol{b} = (3\boldsymbol{p} + 2\boldsymbol{q}) \times (2\boldsymbol{p} - \boldsymbol{q}) = 7\boldsymbol{q} \times \boldsymbol{p},$$

отсюда

$$|\boldsymbol{a} \times \boldsymbol{b}| = 7|\boldsymbol{q} \times \boldsymbol{p}| = 7|\boldsymbol{p}| \cdot |\boldsymbol{q}| \cdot \sin\left(\frac{3}{4}\pi\right) = 42\sqrt{2}.$$

Omeem: $42\sqrt{2}$.

Задание 5.31. Компланарны ли векторы

$$a = (7, 4, 6), \quad b = (2, 1, 1) \quad \text{if} \quad c = (19, 11, 17)$$
?

Peшение. Смешанное произведение компланарных векторов должно быть равно 0. Вычислим смешанное произведение векторов:

$$abc = \begin{vmatrix} 7 & 4 & 6 \\ 2 & 1 & 1 \\ 19 & 11 & 17 \end{vmatrix} = 0.$$

Следовательно, векторы a, b и c компланарны.

Omsem: векторы a, b и c компланарны.

Задание 6.31. Вычислить объем тетраэдра с вершинами в точках $A_1(1;-1;2)$, $A_2(2;1;2)$, $A_3(1;1;4)$, $A_4(6;-3;8)$ и его высоту, опущенную из вершины A_4 на грань $A_1A_2A_3$.

Решение. Объем тетраэдра равен одной шестой от объема параллелепипеда, построенного на векторах $\overline{A_1A_2}$, $\overline{A_1A_3}$, $\overline{A_1A_4}$,

поэтому

$$V_{\text{тетр}} = \frac{1}{6} \left| \overline{A_1 A_2} \cdot \overline{A_1 A_3} \cdot \overline{A_1 A_4} \right| = \frac{1}{6} \left| \begin{array}{ccc} 1 & 2 & 0 \\ 0 & 2 & 2 \\ 5 & -2 & 6 \end{array} \right| = \frac{1}{6} \cdot 36 = 6.$$

Найдем площадь S грани $A_1A_2A_3$:

$$S = \frac{1}{2} |\overline{A_1 A_2} \times \overline{A_1 A_3}|,$$

$$\overline{A_1 A_2} \times \overline{A_1 A_3} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 0 \\ 0 & 2 & 2 \end{vmatrix} = 4\mathbf{i} - 2\mathbf{j} + 2\mathbf{k},$$

$$|\overline{A_1 A_2} \times \overline{A_1 A_3}| = \sqrt{4^2 + (-2)^2 + 2^2} = 2\sqrt{6}.$$

Следовательно, $S=\sqrt{6}$.

Из формулы $V_{\text{тетр}} = \frac{1}{3} S \cdot H$ следует, что высота равна

$$H = \frac{3V_{\text{тетр}}}{S} = \frac{3 \cdot 6}{\sqrt{6}} = \frac{18}{\sqrt{6}}.$$

Ответ: $V_{\text{тетр}} = 6 \text{ ед.}^3$; $H = 18/\sqrt{6} \text{ ед.}$

Задание 7.31. Найти расстояние от точки $M_0(1;-1;2)$ до плоскости, проходящей через три точки $M_1(1;5;-7)$, $M_2(-3;6;3)$, $M_3(-2;7;3)$.

Pешение. Напишем сначала уравнение плоскости $M_1M_2M_3,$ взяв за нормальный ей вектор

$$N = \overline{M_1 M_2} \times \overline{M_1 M_3} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -4 & 1 & 10 \\ -3 & 2 & 10 \end{vmatrix} = (-10; 10; -5) = -5(2; -2; 1).$$

Уравнение плоскости $M_1 M_2 M_3$ имеет вид

$$2(x+3)-2(y-6)+(z-3)=0$$
 или $2x-2y+z+15=0$.

Искомое расстояние можно найти по формуле

$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}} = \frac{|2 \cdot 1 - 2 \cdot (-1) + 1 \cdot 2 + 15|}{\sqrt{2^2 + 2^2 + 1^2}} = \frac{21}{3} = 7.$$

Oтвет: d = 7.

Задание 8.31. Написать уравнение плоскости, проходящей через точку A перпендикулярно вектору \overline{BC} , если A(2;5;-3), B(7;8;-1), C(9;7;4).

Peшение. За нормальный вектор плоскости принимаем вектор $\overline{BC}=(2;-1;5)$. Уравнение плоскости, проходящей через точку A, с нормальным вектором \overline{BC} запишется в виде

$$2(x-2)-(y-5)+5(z+3)=0 \quad \text{или} \quad 2x-y+5z+16=0.$$

Omsem: 2x - y + 5z + 16 = 0.

Задание 9.31. Найти угол между плоскостями

$$x + 2y - 2z - 7 = 0$$
 и $x + y - 35 = 0$.

Решение. Угол между плоскостями равен углу между нормальными векторами плоскостей $N_1 = (1;2;-2)$ и $N_2 = (1;1;0)$:

$$\cos(\widehat{N_1, N_2}) = \frac{N_1 \cdot N_2}{|N_1| \cdot |N_2|} = \frac{1 \cdot 1 + 2 \cdot 1 - 2 \cdot 0}{\sqrt{1 + 4 + 4} \cdot \sqrt{1 + 1 + 0}} = \frac{1}{\sqrt{2}},$$

отсюда $\widehat{\boldsymbol{N}_1,\boldsymbol{N}_2}=\pi/4.$

Ответ: $\pi/4$.

Задание 10.31. Найти координаты точки A(x;0;0), равноудаленной от точек B(-2;-4;-6) и C(-1;-2;-3).

Peшениe. Условие $|\overline{AC}|^2=|\overline{AB}|^2$ запишем в координатной форме

$$(x+2)^2 + 4^2 + 6^2 = (x+1)^2 + 4 + 9,$$

отсюда x = -21.

Omsem: A(-21; 0; 0).

Задание 11.31. Пусть k=2 — коэффициент преобразования подобия с центром в начале координат. Верно ли, что точка A(0;3;-1) принадлежит образу плоскости α : 2x-y+3z-1=0?

Решение. При преобразовании подобия с центром в начале координат плоскость

$$\frac{x}{\frac{1}{2}} + \frac{y}{-1} + \frac{z}{\frac{1}{3}} = 1$$

преобразуется в плоскость

$$\frac{x}{1} + \frac{y}{-2} + \frac{z}{\frac{2}{3}} = 1.$$

Подставим в это уравнение координаты точки A и получим

$$\frac{0}{1} + \frac{3}{-2} - \frac{3}{2} \neq 1.$$

Таким образом, точка A не принадлежит образу плоскости α . *Ответ*: не принадлежит.

Задание 12.31. Написать каноническое уравнение прямой

$$\begin{cases} 2x - 3y - 2z + 6 = 0, \\ x - 3y + z + 3 = 0. \end{cases}$$

Решение. Найдем две точки, лежащие на этой прямой. Для этого решим систему

$$\begin{cases} 2x - 3y = 2z - 6, \\ x - 3y = -z - 3, \end{cases}$$

придавая свободной переменной z два произвольных значения, например, $z_1=0$ и $z_2=3$. Получим точки $M_1(-3;0;0)$ и $M_2(6;4;3)$. За направляющий вектор прямой берем $\overline{M_1M_2}==(9;4;3)$. Искомое каноническое уравнение имеет вид

$$\frac{x+3}{9} = \frac{y}{4} = \frac{z}{3}.$$

Omsem: $\frac{x+3}{9} = \frac{y}{4} = \frac{z}{3}$.

Задание 13.31. Найти точку пересечения прямой

$$\frac{x-7}{3} = \frac{y-3}{1} = \frac{z+1}{-2}$$

и плоскости 2x + y + 7z - 3 = 0.

Решение. Искомая точка лежит как на прямой, так и на плоскости, т.е. ее координаты удовлетворяют системе трех линейных уравнений

$$\begin{cases} 2x + y + 7z - 3 = 0, \\ \frac{y - 3}{1} = \frac{x - 7}{3}, \\ \frac{z + 1}{-2} = \frac{x - 7}{3}. \end{cases}$$

Решая эту систему, находим точку пересечения прямой и плоскости A(10;4;-3).

Omeem: (10; 4; -3).

Задание 14.31. Найти точку, симметричную точке M(-2;0;3) относительно плоскости 2x-2y+10z+1=0.

Решение. Сначала найдем точку M_0 , являющуюся пересечением перпендикуляра, опущенного из точки M на данную плоскость. Для этого напишем уравнение перпендикуляра

$$\frac{x+2}{2} = \frac{y}{-2} = \frac{z-3}{10}$$

или, в параметрической форме,

$$x = 2t - 2$$
, $y = -2t$, $z = 10t + 3$.

Подставим эти выражения в уравнение плоскости, чтобы найти

параметр t, соответствующий точке M. Получим

$$2(2t-2) - 2(-2t) + 10(10t+3) + 1 = 0, \quad t = -\frac{1}{4}.$$

Подставим t=-1/4 в параметрическое уравнение перпендикуляра и получим $x_0=2\left(-\frac{1}{4}\right)-2=-\frac{5}{2},\ y_0=-2\left(-\frac{1}{4}\right)=\frac{1}{2},$ $z_0=10\left(-\frac{1}{4}\right)+3=\frac{1}{2}.$ Искомая точка $L(x_L;y_L;z_L)$ делит отрезок MM_0 в отношении $\lambda=-2.$ Отсюда

$$x_{L} = \frac{-2 + \lambda \left(-\frac{5}{2}\right)}{1 + \lambda} = \frac{-2 + 5}{1 - 2} = -3,$$

$$y_{L} = \frac{0 + \lambda \left(\frac{1}{2}\right)}{1 + \lambda} = \frac{-2 \cdot \frac{1}{2}}{1 - 2} = 1,$$

$$z_{L} = \frac{3 + \lambda \left(\frac{1}{2}\right)}{1 + \lambda} = \frac{3 - 2 \cdot \frac{1}{2}}{1 - 2} = -2.$$

Ответ: L(-3; 1; -2)

ПРЕДЕЛЫ

Справочный материал

Определение 1. Число a называется пределом числовой последовательности $x_1,\,x_2,\,\dots,\,x_n,\,\dots$ при $n\to\infty,\,a=\lim_{n\to\infty}x_n,$ если для любого $\varepsilon>0$ существует такое число $N(\varepsilon)>0$, что для всех $n>N(\varepsilon)$ справедливо неравенство $|x_n-a|<\varepsilon.$

Последовательность, имеющая предел, называется $cxo\partial s$ - weics.

Определение 2. Число A называется пределом функции f(x) при $x \to x_0$, $A = \lim_{x \to x_0} f(x)$, если для всякого $\varepsilon > 0$ существует такое число $\delta(\varepsilon) > 0$, что для всех x, удовлетворяющих неравенству $0 < |x - x_0| < \delta$ и входящих в область определения функции f(x), справедливо неравенство $|f(x) - A| < \varepsilon$.

Если существуют $\lim_{x \to x_0} u(x)$ и $\lim_{x \to x_0} v(x)$, то существуют пределы:

1)
$$\lim_{x \to x_0} [u(x) \pm v(x)] = \lim_{x \to x_0} u(x) \pm \lim_{x \to x_0} v(x);$$

2)
$$\lim_{x \to x_0} [c \cdot f(x)] = c \cdot \lim_{x \to x_0} f(x);$$

3)
$$\lim_{x \to x_0} [u(x) \cdot v(x)] = \lim_{x \to x_0} u(x) \cdot \lim_{x \to x_0} v(x);$$

4)
$$\lim_{x \to x_0} \frac{u(x)}{v(x)} = \frac{\lim_{x \to x_0} u(x)}{\lim_{x \to x_0} v(x)}, \quad \lim_{x \to x_0} v(x) \neq 0;$$

5) $\lim_{x\to x_0}f(x)=f\Bigl(\lim_{x\to x_0}x\Bigr)=f(x_0)$ (для всех основных элементарных функций в любой точке их области определения).

Первый замечательный предел:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Второй замечательный предел:

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{\alpha \to 0} (1 + \alpha)^{\frac{1}{\alpha}} = e, \quad e = 2,71828...$$

Решения заданий 31 варианта

Задание 1.31. Доказать, что $\lim_{n \to \infty} \frac{2n^3}{n^3 - 2} = 2$ (указать $N(\varepsilon)$).

Решение. Для любого $\varepsilon>0$ попробуем найти такое натуральное число $N(\varepsilon)$, чтобы для всякого натурального n>N выполнялось неравенство $|a_n-a|<\varepsilon$. Для этого найдем абсолютную величину разности

$$|a_n - a| = \left| \frac{2n^3}{n^3 - 2} - 2 \right| = \left| \frac{2n^3 - 2n^3 + 4}{n^3 - 2} \right| = \frac{4}{n^3 - 2}.$$

Значит, неравенство $|a_n-a|<\varepsilon$ выполняется, если $\frac{4}{n^3-2}<\varepsilon$, откуда

$$n > \sqrt[3]{\frac{4+2\varepsilon}{\varepsilon}} = \sqrt[3]{2+\frac{4}{\varepsilon}}.$$

Поэтому в качестве $N(\varepsilon)$ можно найти целую часть числа $\sqrt[3]{2+\frac{4}{\varepsilon}}$, т.е. $N=\sqrt[3]{2+\frac{4}{\varepsilon}}$. Итак, для каждого $\varepsilon>0$ можно найти такое N, что из неравенства n>N будет следовать $\left|\frac{2n^3}{n^3-2}-2\right|<\varepsilon$, а это значит, что $\lim_{n\to\infty}\frac{2n^3}{n^3-2}=2$.

Задание 2.31. Вычислить предел числовой последовательности

$$\lim_{n \to \infty} \frac{(2n+1)^2 - (n+1)^2}{n^2 + n + 1}.$$

Решение.

$$\lim_{n \to \infty} \frac{(2n+1)^2 - (n+1)^2}{n^2 + n + 1} =$$

$$= \lim_{n \to \infty} \frac{n^2 \left[\left(1 + \frac{1}{n} \right)^2 - \left(1 + \frac{1}{n} \right)^2 \right]}{n^2 \left(1 + \frac{1}{n} + \frac{1}{n^2} \right)} = \frac{4-1}{1} = 3.$$

Ответ: 3.

Задание 3.31. Вычислить предел числовой последовательности

$$\lim_{n \to \infty} \frac{n\sqrt[6]{n} + \sqrt[5]{32n^{10} + 1}}{(n + \sqrt[4]{10})\sqrt[3]{n^3 - 1}}.$$

Решение.

$$\lim_{n \to \infty} \frac{n \sqrt[6]{n} + \sqrt[5]{32n^{10} + 1}}{(n + \sqrt[4]{10})\sqrt[3]{n^3 - 1}} =$$

$$= \lim_{n \to \infty} \frac{n^2 \left(\sqrt[6]{\frac{1}{n^5}} + \sqrt[5]{32 + \frac{1}{n^{10}}}\right)}{n^2 \left(1 + \sqrt[4]{\frac{1}{n^3}}\right)\sqrt[3]{1 - \frac{1}{n^3}}} = \frac{\sqrt[5]{32}}{1} = 2.$$

Ответ: 2.

Задание 4.31. Вычислить предел числовой последовательности

$$\lim_{n \to \infty} \frac{\sqrt{(n^2 + 5)(n^4 + 2)} - \sqrt{n^6 - 3n^2 + 5}}{n}.$$

Решение. Умножим числитель и знаменатель на выражение, сопряженное числителю:

$$\lim_{n \to \infty} \frac{\sqrt{(n^2 + 5)(n^4 + 2)} - \sqrt{n^6 - 3n^2 + 5}}{n} =$$

$$= \lim_{n \to \infty} \frac{(n^6 + 5n^4 + 2n^2 + 10) - (n^6 - 3n^2 + 5)}{n\left(\sqrt{(n^2 + 5)(n^4 + 2)} + \sqrt{n^6 - 3n^2 + 5}\right)} =$$

$$= \lim_{n \to \infty} \frac{n^4 \left(5 + \frac{3}{n} + \frac{2}{n^2} + \frac{5}{n^4}\right)}{n \cdot n^3 \left(\sqrt{\left(1 + \frac{5}{n^2}\right)\left(1 + \frac{2}{n^4}\right)} + \sqrt{1 - \frac{3}{n^3} + \frac{5}{n^6}}\right)} = \frac{5}{2}.$$

Omeem: 5/2.

Задание 5.31. Вычислить предел числовой последовательности

 $\lim_{n\to\infty}\left(\frac{2+4+\ldots+2n}{n+3}-n\right).$

 $Peшение.\ 2+4+...+2n$ — это сумма членов арифметической прогрессии и она равна

$$S_n = \frac{a_1 + a_n}{2}n = \frac{2 + 2n}{2}n = (1 + n)n.$$

Тогда

$$\lim_{n \to \infty} \left(\frac{2+4+\ldots+2n}{n+3} - n \right) = \lim_{n \to \infty} \left(\frac{(1+n)n}{n+3} - n \right) =$$

$$= \lim_{n \to \infty} \frac{n+n^2-n^2-3n}{n+3} = \lim_{n \to \infty} \frac{-2n}{n\left(1+\frac{3}{n}\right)} = -2.$$

Oтвет: -2.

Задание 6.31. Вычислить предел числовой последовательности

$$\lim_{n \to \infty} \left(\frac{4n^2 + 4n - 1}{4n^2 + 2n + 1} \right)^{1 - 2n}.$$

Решение. Выделим целую часть выражения

$$\frac{4n^2 + 4n - 1}{4n^2 + 2n + 1} = \frac{4n^2 + 2n + 1 + 2n - 2}{4n^2 + 2n + 1} = 1 + \frac{2n - 2}{4n^2 + 2n + 1}.$$

Тогда

$$\begin{split} &\lim_{n\to\infty} \left(\frac{4n^2+4n-1}{4n^2+2n+1}\right)^{1-2n} = \lim_{n\to\infty} \left(1+\frac{2n-2}{4n^2+2n+1}\right)^{1-2n} = \\ &= \lim_{n\to\infty} \left[\left(1+\frac{2n-2}{4n^2+2n+1}\right)^{\frac{4n^2+2n+1}{2n-2}} \right]^{\frac{(2n-2)(1-2n)}{4n^2+2n+1}} = \\ &= e^{\lim_{n\to\infty} \frac{(2n-2)(1-2n)}{4n^2+2n+1}} = e^{\lim_{n\to\infty} \frac{n^2\left(2-\frac{2}{n}\right)\left(\frac{1}{n}-2\right)}{n^2\left(4+\frac{2}{n}+\frac{1}{n^2}\right)}} = e^{-1}. \end{split}$$

Ответ: e^{-1} .

Задание 7.31. Доказать (найти $\delta(\varepsilon)$), что

$$\lim_{x \to \frac{1}{3}} \frac{15x^2 - 2x - 1}{x - \frac{1}{3}} = 8.$$

Решение. Согласно « $\varepsilon-\delta$ »-определению нам надо доказать, что для всякого $\varepsilon>0$ существует такое $\delta>0$, что из неравенства $0<\left|x-\frac{1}{3}\right|<\delta$ следует $|f(x)-8|<\varepsilon$. Другими словами, необходимо решить неравенство

$$\left| \frac{15x^2 - 2x - 1}{x - \frac{1}{3}} - 8 \right| = \left| \frac{15\left(x - \frac{1}{3}\right)\left(x + \frac{1}{5}\right)}{x - \frac{1}{3}} - 8 \right| =$$

$$= \left| 15\left(x + \frac{1}{5}\right) - 8 \right| = |15x + 3 - 8| = |15x - 5| = 15\left|x - \frac{1}{3}\right| < \varepsilon.$$

Последнее неравенство показывает, что как только $\left|x-\frac{1}{3}\right|<\frac{\varepsilon}{15}$, выполняется требуемое неравенство $|f(x)-8|<\varepsilon$. Следовательно, $\lim_{x\to\frac{1}{3}}\frac{15x^2-2x-1}{x-\frac{1}{3}}=8$, что и требовалось доказать.

Задание 8.31. Доказать, что функция $f(x) = 5x^2 + 5$ непрерывна в точке $x_0 = 8$ (найти $\delta(\varepsilon)$).

Решение. Согласно « $\varepsilon-\delta$ »-определению непрерывности нам надо доказать, что для всякого $\varepsilon>0$ существует такое $\delta>0$, что из неравенства $|x-x_0|<\delta$, $x_0=8$, следует $|f(x)-f(x_0)|<\delta$, $f(x_0)=f(8)=325$. Другими словами, необходимо решить неравенство $|5x^2+5-325|<\varepsilon$:

$$\begin{split} |5x^2 + 5 - 325| &= |5x^2 - 320| = 5|x^2 - 64| = 5|x - 8| \cdot |x + 8| = \\ &= 5|x - 8| \cdot |(x - 8) + 16| \leqslant 5|x - 8|(|x - 8| + |16|) < 5\delta(\delta + 16) < \varepsilon; \\ 5\delta(\delta + 16) < \varepsilon \quad \Rightarrow \quad \delta = \sqrt{64 + \frac{\varepsilon}{5}} - 8. \end{split}$$

Задание 9.31. Вычислить предел функции

$$\lim_{x \to 3} \frac{x^3 - 4x^2 - 3x + 18}{x^3 - 5x^2 + 3x + 9}.$$

Решение.

$$\lim_{x \to 3} \frac{x^3 - 4x^2 - 3x + 18}{x^3 - 5x^2 + 3x + 9} = \lim_{x \to 3} \frac{(x - 3)(x - 3)(x + 2)}{(x - 3)(x - 3)(x + 1)} = \lim_{x \to 3} \frac{x + 2}{x + 1} = \frac{5}{4}.$$
Omeem: 5/4.

Задание 10.31. Вычислить предел функции

$$\lim_{x \to 3} \frac{\sqrt{x+13} - 2\sqrt{x+1}}{\sqrt[3]{x^2 - 9}}.$$

Решение. Умножим и числитель и знаменатель на выражение, сопряженное числителю:

$$\lim_{x \to 3} \frac{\sqrt{x+13} - 2\sqrt{x+1}}{\sqrt[3]{x^2 - 9}} =$$

$$= \lim_{x \to 3} \frac{(\sqrt{x+13} - 2\sqrt{x+1})(\sqrt{x+13} + 2\sqrt{x+1})}{\sqrt[3]{x^2 - 9}(\sqrt{x+13} + 2\sqrt{x+1})} =$$

$$= \lim_{x \to 3} \frac{x+13 - 4(x+1)}{\sqrt[3]{x^2 - 9}(\sqrt{x+13} + 2\sqrt{x+1})} =$$

$$= \lim_{x \to 3} \frac{-3\sqrt[3]{(x-3)^2}}{\sqrt[3]{(x-3)(x+3)}(\sqrt{x+13} + 2\sqrt{x+1})} =$$

$$= \lim_{x \to 3} \frac{3\sqrt[3]{(x-3)^2}}{\sqrt[3]{x+3}(\sqrt{x+13} + 2\sqrt{x+1})} = \frac{3 \cdot 0}{\sqrt[3]{9}(\sqrt{16} + 2\sqrt{4})} = 0.$$

Ответ: 0.

Задание 11.31. Вычислить предел функции

$$\lim_{x \to 0} \frac{x \sin 2x}{1 + \cos(x - 3\pi)}.$$

Решение.

$$\lim_{x \to 0} \frac{x \sin 2x}{1 + \cos(x - 3\pi)} = \lim_{x \to 0} \frac{x \sin 2x}{1 - \cos x} = \lim_{x \to 0} \frac{x \sin 2x}{2 \sin^2 \frac{x}{2}} =$$

$$= \lim_{x \to 0} \frac{2x \sin x \cos x}{2 \sin^2 \frac{x}{2}} = \lim_{x \to 0} \frac{2x \sin \frac{x}{2} \cos \frac{x}{2} \cos x}{\sin^2 \frac{x}{2}} =$$

$$= 2 \lim_{x \to 0} \left(\cos \frac{x}{2} \cos x\right) \cdot \lim_{x \to 0} \frac{2 \cdot \frac{x}{2}}{\sin \frac{x}{2}} = 2 \cdot 2 = 4.$$

Ответ: 4.

Задание 12.31. Вычислить предел функции

$$\lim_{x \to \pi} \frac{\cos 3x - \cos x}{\tan^2 2x}.$$

Решение.

$$\lim_{x \to \pi} \frac{\cos 3x - \cos x}{\tan^2 2x} = \lim_{x \to \pi} \frac{-2\sin 2x \sin x \cos^2 2x}{\sin^2 2x} = \lim_{x \to \pi} \frac{-2\sin 2x \sin x \cos^2 2x}{\sin^2 2x} = \lim_{x \to \pi} \frac{\cos 3x - \cos x}{\cos^2 2x} = \lim_{x \to \pi} \frac{\cos 3x - \cos x}{\sin^2 2x} = \lim_{x \to \pi} \frac{-2\sin 2x \sin x \cos^2 2x}{\sin^2 2x} = \lim_{x \to \pi} \frac{-2\sin 2x \sin x \cos^2 2x}{\sin^2 2x} = \lim_{x \to \pi} \frac{-2\sin 2x \sin x \cos^2 2x}{\sin^2 2x} = \lim_{x \to \pi} \frac{-2\sin 2x \sin x \cos^2 2x}{\sin^2 2x} = \lim_{x \to \pi} \frac{-2\sin 2x \sin x \cos^2 2x}{\sin^2 2x} = \lim_{x \to \pi} \frac{-2\sin 2x \sin x \cos^2 2x}{\sin^2 2x} = \lim_{x \to \pi} \frac{-2\sin 2x \sin x \cos^2 2x}{\sin^2 2x} = \lim_{x \to \pi} \frac{-2\sin 2x \sin x \cos^2 2x}{\sin^2 2x} = \lim_{x \to \pi} \frac{-2\sin 2x \sin x \cos^2 2x}{\sin^2 2x} = \lim_{x \to \pi} \frac{-2\sin 2x \sin x \cos^2 2x}{\sin^2 2x} = \lim_{x \to \pi} \frac{-2\sin 2x \sin x \cos^2 2x}{\sin^2 2x} = \lim_{x \to \pi} \frac{-2\sin 2x \sin x \cos^2 2x}{\sin^2 2x} = \lim_{x \to \pi} \frac{-2\sin 2x \sin x \cos^2 2x}{\sin^2 2x} = \lim_{x \to \pi} \frac{-2\sin 2x}{\sin^2 2x} = \lim_{$$

$$= -2 \lim_{x \to \pi} \cos^2 2x \cdot \lim_{x \to \pi} \frac{\sin x}{\sin 2x} = -2 \lim_{x \to \pi} \frac{1}{2 \cos x} = -1 \cdot (-1) = 1.$$

Ответ: 1.

Задание 13.31. Вычислить предел функции $\lim_{x \to \pi} \frac{\sin \frac{x^2}{\pi}}{2^{\sqrt{\sin x + 1}} - 2}.$ Решение.

$$\lim_{x \to \pi} \frac{\sin \frac{x^2}{\pi}}{2^{\sqrt{\sin x + 1}} - 2} = \lim_{x \to \pi} \frac{\sin \frac{x^2}{\pi}}{2(2^{\sqrt{\sin x + 1}} - 1)} =$$

$$= \lim_{x \to \pi} \frac{\sin \frac{x^2}{\pi} (\sqrt{\sin x + 1} + 1)}{2 \cdot \frac{2^{\sqrt{\sin x + 1}} - 1}{\sqrt{\sin x + 1} - 1}} =$$

$$= \frac{1}{2 \ln 2} \lim_{x \to \pi} \frac{\sin \frac{x^2}{\pi} (\sqrt{\sin x + 1} + 1)}{(\sin x + 1) - 1} =$$

$$= \frac{1}{2 \ln 2} \lim_{x \to \pi} \frac{\sin \frac{x^2}{\pi} (\sqrt{\sin x + 1} + 1)}{(\sin x + 1) - 1} =$$

$$= \frac{1}{2 \ln 2} \lim_{x \to \pi} (\sqrt{\sin x + 1} + 1) \lim_{x \to \pi} \frac{\sin \frac{x^2}{\pi}}{\sin x} = \frac{1}{2 \ln 2} \cdot 2 \cdot \lim_{x \to \pi} \frac{\sin \frac{x^2}{\pi}}{\sin x} =$$

$$= \frac{1}{\ln 2} \lim_{x \to \pi} \frac{\sin \left(\pi - \frac{x^2}{\pi}\right)}{\sin(\pi - x)} = \frac{1}{\ln 2} \lim_{x \to \pi} \frac{\pi - \frac{x^2}{\pi}}{\pi - x} = \frac{1}{\ln 2} \lim_{x \to \pi} \frac{\pi + x}{\pi} = \frac{2}{\ln 2}.$$
One em: $2 / \ln 2$.

Задание 14.31. Вычислить предел функции $\lim_{x \to 0} \frac{2^{3x} - 3^{5x}}{\sin 7x - 2x}$. *Решение.*

$$\begin{split} \lim_{x\to 0} \frac{2^{3x}-3^{5x}}{\sin 7x-2x} &= \lim_{x\to 0} \frac{(2^{3x}-1)-(3^{5x}-1)}{\sin 7x-2x} = \\ &= \frac{\lim_{x\to 0} \frac{2^{3x}-1}{3x}\cdot 3 - \lim_{x\to 0} \frac{3^{5x}-1}{5x}\cdot 5}{\lim_{x\to 0} \frac{\sin 7x}{7x}\cdot 7 - \lim_{x\to 0} \frac{2x}{x}} = \frac{3\ln 2 - 5\ln 3}{7-2} = \ln \frac{\sqrt[5]{8}}{3}. \end{split}$$
 Onsem: $\ln \frac{\sqrt[5]{8}}{3}$.

Задание 15.31. Вычислить предел функции $\lim_{x \to 1} \frac{e^x - e}{\sin(x^2 - 1)}$.

Решение.

$$\lim_{x \to 1} \frac{e^x - e}{\sin(x^2 - 1)} = \lim_{x \to 1} \frac{e(e^{x - 1} - 1)}{\sin(x^2 - 1)} = e \lim_{x \to 1} \frac{x - 1}{x^2 - 1} = \frac{e}{2}.$$

Oтвет: e/2.

Задание 16.31. Вычислить предел функции

$$\lim_{x \to 0} \left(\frac{1 + x^2 2^x}{1 + x^2 5^x} \right)^{\frac{1}{\sin^3 x}}.$$

Решение.

$$\lim_{x \to 0} \left(\frac{1 + x^2 2^x}{1 + x^2 5^x} \right)^{\frac{1}{\sin^3 x}} = \lim_{x \to 0} \left(1 + \frac{x^2 (2^x - 5^x)}{1 + x^2 5^x} \right)^{\frac{1}{\sin^3 x}} =$$

$$= \lim_{x \to 0} \left(1 + \frac{x^2 (2^x - 5^x)}{1 + x^2 5^x} \right)^{\frac{1 + x^2 5^x}{x^2 (2^x - 5^x)}} \cdot \frac{x^2 (2^x - 5^x)}{(1 + x^2 5^x) \sin^3 x} =$$

$$= e^{\lim_{x \to 0} \frac{x^2 (2^x - 5^x)}{(1 + x^2 5^x) \sin^3 x}} = e^{\lim_{x \to 0} \frac{1}{1 + x^2 5^x} \cdot \lim_{x \to 0} \frac{x^2 (2^x - 5^x)}{\sin^3 x}} =$$

$$= e^{\lim_{x \to 0} 5^x \cdot \lim_{x \to 0} \frac{\left(\frac{2}{5}\right)^x - 1}{\sin x}} = e^{\lim_{x \to 0} \frac{x \ln \frac{2}{5}}{x}} = e^{\ln \frac{2}{5}} = \frac{2}{5}.$$

Oтвет: 2/5.

Задание 17.31. Вычислить предел функции $\lim_{x\to 0} \left(\frac{x^3+4}{x^3+9}\right)^{\frac{1}{x+2}}$. *Решение.*

$$\lim_{x \to 0} \left(\frac{x^3 + 4}{x^3 + 9} \right)^{\frac{1}{x+2}} = \left(\frac{4}{9} \right)^{\frac{1}{2}} = \frac{2}{3}.$$

Ответ: 2/3.

Задание 18.31. Вычислить предел функции

$$\lim_{x \to 1} \left(\frac{2x - 1}{x} \right)^{\frac{\ln(3 + 2x)}{\ln(2 - x)}}.$$

Решение.

$$\lim_{x \to 1} \left(\frac{2x-1}{x}\right)^{\frac{\ln(3+2x)}{\ln(2-x)}} = \lim_{x \to 1} \left[\left(1 + \frac{x-1}{x}\right)^{\frac{x}{x-1}} \right]^{\frac{x-1}{x} \cdot \frac{\ln(3+2x)}{\ln(2-x)}} = e^{\lim_{x \to 1} \ln(3+2x) \cdot \lim_{x \to 1} \frac{x-1}{x \ln(2-x)}} = e^{\lim_{x \to 1} \ln(3+2x) \cdot \lim_{x \to 1} \frac{x-1}{x \ln(2-x)}} = \frac{1}{5}.$$
Omeem: 1/5.

•

Задание 19.31. Вычислить предел функции

$$\lim_{x \to 1} \left(\frac{e^{2x} - e^2}{x - 1} \right)^{x + 1}.$$

Решение.

$$\lim_{x \to 1} \left(\frac{e^{2x} - e^2}{x - 1} \right)^{x + 1} = \lim_{x \to 1} \left(\frac{e^2(e^{2(x - 1)} - 1)}{x - 1} \right)^{x + 1} = (e^2 \cdot 2)^2 = 4e^4.$$

Ответ: $4e^4$.

Задание 20.31. Вычислить предел функции

$$\lim_{n \to \infty} \frac{\sqrt{n^2 + 3n - 1} + \sqrt[3]{2n^2 + 1}}{n + 2\sin n}.$$

Решение.

$$\lim_{n \to \infty} \frac{\sqrt{n^2 + 3n - 1} + \sqrt[3]{2n^2 + 1}}{n + 2\sin n} = \lim_{n \to \infty} \frac{n\left(\sqrt{1 + \frac{3}{n} - \frac{1}{n^2}} + \sqrt[3]{\frac{2}{n} + \frac{1}{n^3}}\right)}{n\left(1 + 2\frac{\sin n}{n}\right)} = 1,$$

т.к. $|\sin n| \leqslant 1$ ограничена, а $n \to \infty$, то $\frac{\sin n}{n} \to 0$. Ответ: 1.

ТИПОВОЙ РАСЧЕТ № 1 ПО АЛГЕБРЕ

Задание 1.25. Даны матрицы

$$A = \begin{pmatrix} 2 & 1 & 0 & 2 \\ 3 & 2 & 1 & 0 \\ -1 & 0 & 1 & 3 \\ -1 & 2 & 1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 2 \\ 1 \\ 1 \end{pmatrix}.$$

- 1. Найти матрицу A^{-1} , обратную для матрицы A: а) с помощью элементарных преобразований; б) с помощью алгебраических дополнений.
 - 2. Решить матричное уравнение AX = B.

 $Peшение.\ 1.\ a)$ Найдем обратную матрицу A^{-1} с помощью элементарных преобразований. Для этого возьмем матрицу

$$(A|E) = \left(\begin{array}{cccc|c} 2 & 1 & 0 & 2 & 1 & 0 & 0 & 0 \\ 3 & 2 & 1 & 0 & 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 3 & 0 & 0 & 1 & 0 \\ -1 & 2 & 1 & 3 & 0 & 0 & 0 & 1 \end{array}\right).$$

С помощью цепочки элементарных преобразований матрицу (A|E) преобразуем до матрицы $(E|A^{-1})$. Эти преобразования запишем в виде таблицы:

Следовательно,

$$A^{-1} = \begin{pmatrix} \frac{3}{14} & \frac{1}{7} & \frac{3}{28} & -\frac{1}{4} \\ 0 & 0 & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{9}{14} & \frac{4}{7} & \frac{19}{28} & -\frac{1}{4} \\ \frac{2}{7} & -\frac{1}{7} & \frac{1}{7} & 0 \end{pmatrix}.$$

б) Находим определитель матрицы A:

$$|A| = \begin{vmatrix} 2 & 1 & 0 & 2 \\ 3 & 2 & \boxed{1} & 0 \\ -1 & 0 & 1 & 3 \\ -1 & 2 & 1 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 0 & 2 \\ 3 & 2 & 1 & 0 \\ -4 & -2 & 0 & 3 \\ -4 & 0 & 0 & 3 \end{vmatrix} =$$

$$= 1 \cdot (-1)^5 \cdot \begin{vmatrix} 2 & 1 & 2 \\ -4 & -2 & 3 \\ -4 & 0 & 3 \end{vmatrix} = - \begin{vmatrix} 2 & 1 & 2 \\ 0 & -2 & 0 \\ -4 & 0 & 3 \end{vmatrix} =$$
$$= -(-2) \cdot \begin{vmatrix} 2 & 2 \\ -4 & 3 \end{vmatrix} = 2 \cdot (6+8) = 28.$$

Найдем алгебраические дополнения элементов матрицы A:

$$A_{11} = \begin{vmatrix} 2 & 1 & 0 \\ 0 & 1 & 3 \\ 2 & 1 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 0 \\ 0 & 1 & 3 \\ 2 & 0 & 0 \end{vmatrix} = 2 \cdot (-1)^{3+1} \cdot \begin{vmatrix} 1 & 0 \\ 1 & 3 \end{vmatrix} = 2 \cdot 3 = 6;$$

$$A_{12} = -\begin{vmatrix} 3 & 1 & 0 \\ -1 & 1 & 3 \\ -1 & 1 & 3 \end{vmatrix} = 0;$$

$$A_{13} = \begin{vmatrix} 3 & 2 & 0 \\ -1 & 0 & 3 \\ -1 & 2 & 3 \end{vmatrix} = \begin{vmatrix} 3 & 2 & 0 \\ -1 & 0 & 3 \\ 0 & 2 & 0 \end{vmatrix} = 2(-1)^{3+2} \cdot \begin{vmatrix} 3 & 0 \\ -1 & 3 \end{vmatrix} = -18;$$

$$A_{14} = -\begin{vmatrix} 3 & 2 & 1 \\ -1 & 0 & 1 \\ -1 & 2 & 1 \end{vmatrix} = -\begin{vmatrix} 3 & 2 & 1 \\ -1 & 0 & 1 \\ 0 & 2 & 0 \end{vmatrix} = -2(-1)^{3+2} \cdot \begin{vmatrix} 3 & 1 \\ -1 & 1 \end{vmatrix} = 8;$$

$$A_{21} = -\begin{vmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 2 & 1 & 3 \end{vmatrix} = -\begin{vmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 2 & 1 & 3 \end{vmatrix} = 0;$$

$$A_{22} = \begin{vmatrix} 2 & 0 & 2 \\ -1 & 1 & 3 \\ -1 & 1 & 3 \end{vmatrix} = 0;$$

$$A_{23} = -\begin{vmatrix} 2 & 1 & 2 \\ -1 & 0 & 3 \\ -1 & 2 & 3 \end{vmatrix} = -\begin{vmatrix} 2 & 1 & 2 \\ -1 & 0 & 3 \\ 0 & 2 & 0 \end{vmatrix} = -2(-1)^{3+2} \cdot \begin{vmatrix} 2 & 2 \\ 1 & 3 \end{vmatrix} = 16;$$

$$A_{24} = \begin{vmatrix} 2 & 1 & 0 \\ -1 & 0 & 1 \\ -1 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 2 & 0 \end{vmatrix} = 2(-1)^{5} \cdot \begin{vmatrix} 2 & 0 \\ -1 & 1 \end{vmatrix} = -4;$$

$$A_{31} = \begin{vmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 2 & 1 & 3 \end{vmatrix} = -\begin{vmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 0 & 3 \end{vmatrix} = 3 \cdot \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} = 3;$$

$$A_{32} = -\begin{vmatrix} 2 & 0 & 2 \\ 3 & 1 & 0 \\ -1 & 1 & 3 \end{vmatrix} = -\begin{vmatrix} 2 & 0 & 2 \\ 3 & 1 & 0 \\ -1 & 1 & 3 \end{vmatrix} = -14;$$

$$A_{33} = \begin{vmatrix} 2 & 1 & 2 \\ 3 & 2 & 0 \\ -1 & 2 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 2 \\ -1 & 0 & -4 \\ -5 & 0 & -1 \end{vmatrix} = (-1)^{1+2} \cdot \begin{vmatrix} -1 & -4 \\ -5 & -1 \end{vmatrix} = 19;$$

$$A_{34} = - \begin{vmatrix} 2 & 1 & 0 \\ 3 & 2 & 1 \\ -1 & 2 & 1 \end{vmatrix} = - \begin{vmatrix} 2 & 1 & 0 \\ 3 & 2 & 1 \\ -4 & 0 & 0 \end{vmatrix} = -(-1)^5 \cdot \begin{vmatrix} 2 & 1 \\ -4 & 0 \end{vmatrix} = 4;$$

$$A_{41} = - \begin{vmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{vmatrix} = - \begin{vmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ -2 & 0 & 3 \end{vmatrix} = - \begin{vmatrix} 1 & 2 \\ -2 & 3 \end{vmatrix} = -7;$$

$$A_{42} = \begin{vmatrix} 2 & 0 & 2 \\ 3 & 1 & 0 \\ -1 & 1 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 0 & 2 \\ 3 & 1 & 0 \\ -4 & 0 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 2 \\ -4 & 3 \end{vmatrix} = 14;$$

$$A_{43} = - \begin{vmatrix} 2 & 1 & 2 \\ 3 & 2 & 0 \\ -1 & 0 & 3 \end{vmatrix} = - \begin{vmatrix} 2 & 1 & 2 \\ -1 & 0 & -4 \\ -1 & 0 & 3 \end{vmatrix} = -(-1)^3 \cdot \begin{vmatrix} -1 & -4 \\ -1 & 3 \end{vmatrix} = -7;$$

$$A_{44} = \begin{vmatrix} 2 & 1 & 0 \\ 3 & 2 & 1 \\ -1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 0 \\ 4 & 2 & 0 \\ -1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 1 \\ 4 & 2 \end{vmatrix} = 0.$$

Найдем обратную матрицу:

$$A^{-1} = \frac{1}{|A|} \begin{pmatrix} A_{11} & A_{21} & A_{31} & A_{41} \\ A_{12} & A_{22} & A_{32} & A_{42} \\ A_{13} & A_{23} & A_{33} & A_{43} \\ A_{14} & A_{24} & A_{34} & A_{44} \end{pmatrix} = \frac{1}{28} \begin{pmatrix} 6 & 4 & 3 & -7 \\ 0 & 0 & -14 & 14 \\ -18 & 16 & 19 & -7 \\ 8 & -4 & 4 & 0 \end{pmatrix}.$$

2.
$$AX = B \Rightarrow A^{-1}AX = A^{-1}B \Rightarrow X = A^{-1}B$$
;

$$X = \frac{1}{28} \begin{pmatrix} 6 & 4 & 3 & -7 \\ 0 & 0 & -14 & 14 \\ -18 & 16 & 19 & -7 \\ 8 & -4 & 4 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ 1 \\ 1 \end{pmatrix} = \frac{1}{28} \begin{pmatrix} 4 \\ 0 \\ 44 \\ -4 \end{pmatrix} = \begin{pmatrix} \frac{1}{7} \\ 0 \\ \frac{11}{7} \\ -\frac{1}{7} \end{pmatrix}.$$

Ответ:

$$A^{-1} = \frac{1}{28} \begin{pmatrix} 6 & 4 & 3 & -7 \\ 0 & 0 & -14 & 14 \\ -18 & 16 & 19 & -7 \\ 8 & -4 & 4 & 0 \end{pmatrix}, \quad \boldsymbol{x} = \begin{pmatrix} \frac{1}{7} \\ 0 \\ \frac{11}{7} \\ -\frac{1}{7} \end{pmatrix}.$$

Задание 2.25. Найти значение многочлена $f(x) = x^2 - 3x + 2$ от матрицы

$$A = \left(\begin{array}{cccc} 2 & 2 & -1 & 4 \\ 4 & 3 & -1 & 2 \\ 8 & 5 & -3 & 4 \\ 3 & 3 & -2 & 2 \end{array}\right).$$

Решение.

$$f(A) = \begin{pmatrix} 2 & 2 & -1 & 4 \\ 4 & 3 & -1 & 2 \\ 8 & 5 & -3 & 4 \\ 3 & 3 & -2 & 2 \end{pmatrix} \begin{pmatrix} 2 & 2 & -1 & 4 \\ 4 & 3 & -1 & 2 \\ 8 & 5 & -3 & 4 \\ 3 & 3 & -2 & 2 \end{pmatrix} -$$

$$-3 \cdot \begin{pmatrix} 2 & 2 & -1 & 4 \\ 4 & 3 & -1 & 2 \\ 8 & 5 & -3 & 4 \\ 3 & 3 & -2 & 2 \end{pmatrix} + 2 \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} =$$

$$= \begin{pmatrix} 16 & 17 & -9 & 16 \\ 18 & 18 & -8 & 22 \\ 24 & 28 & -12 & 38 \\ 8 & 11 & -4 & 14 \end{pmatrix} + \begin{pmatrix} -6 & -6 & 3 & -12 \\ -12 & -9 & 3 & -6 \\ -24 & -15 & 9 & -12 \\ -9 & -9 & 6 & -6 \end{pmatrix} +$$

$$+ \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 12 & 11 & -6 & 4 \\ 6 & 11 & -5 & 12 \\ 0 & 13 & -1 & 26 \\ -1 & 2 & 2 & 10 \end{pmatrix}.$$

Ответ:

$$f(A) = \left(\begin{array}{cccc} 12 & 11 & -6 & 4\\ 6 & 11 & -5 & 12\\ 0 & 13 & -1 & 26\\ -1 & 2 & 2 & 10 \end{array}\right).$$

Задание 3.25. Вычислить определитель $\begin{bmatrix} -1 & 2 & 3 & 4 \\ 1 & 0 & 2 & 2 \\ 4 & -1 & 1 & 0 \\ -2 & 1 & 2 & 3 \end{bmatrix}.$

Решение.

$$\Delta = \begin{vmatrix} -1 & 2 & 3 & 4 \\ 1 & 0 & 2 & 2 \\ 4 & \boxed{-1} & 1 & 0 \\ -2 & 1 & 2 & 3 \end{vmatrix} = \begin{vmatrix} 7 & 0 & 5 & 4 \\ 1 & 0 & 2 & 2 \\ 4 & \boxed{-1} & 1 & 0 \\ 2 & 0 & 3 & 3 \end{vmatrix} =$$

$$= (-1) \cdot (-1)^{2+3} \cdot \begin{vmatrix} 7 & 5 & 4 \\ \boxed{1} & 2 & 2 \\ 2 & 3 & 3 \end{vmatrix} = \begin{vmatrix} 7 & 1 & 4 \\ 1 & 0 & 2 \\ 2 & 0 & 3 \end{vmatrix} =$$

$$= 1 \cdot (-1)^{1+2} \cdot \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = 1.$$

Ответ: $\Delta = 1$.

Задание 4.25. По формулам Крамера решить систему линейных уравнений

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 6, \\ 4x_1 + x_2 + 4x_3 = 9, \\ 3x_1 + 5x_2 + 2x_3 = 10. \end{cases}$$

Решение. По правилу Крамера

$$x_1 = \frac{\Delta_1}{\Delta}, \quad x_2 = \frac{\Delta_2}{\Delta}, \quad x_3 = \frac{\Delta_3}{\Delta},$$

где

$$\Delta = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 1 & 4 \\ 3 & 5 & 2 \end{vmatrix} = 2 + 60 + 24 - 9 - 20 - 16 = 41,$$

$$\Delta_1 = \begin{vmatrix} 6 & 2 & 3 \\ 9 & 1 & 4 \\ 10 & 5 & 2 \end{vmatrix} = 12 + 135 + 80 - 30 - 120 - 36 = 41,$$

$$\Delta_2 = \begin{vmatrix} 1 & 6 & 3 \\ 4 & 9 & 4 \\ 3 & 10 & 2 \end{vmatrix} = 18 + 120 + 92 - 81 - 40 - 48 = 41,$$

$$\Delta_3 = \begin{vmatrix} 1 & 2 & 6 \\ 4 & 1 & 9 \\ 3 & 5 & 10 \end{vmatrix} = 10 + 120 + 54 - 18 - 45 - 80 = 41.$$

Тогда $x_1 = 1$, $x_2 = 1$, $x_3 = 1$.

Ответ: c(1;1;1).

Задание 5.25. Выполнить действия над комплексными числами в тригонометрической форме $\frac{(-1+i)^3}{(-1-i\sqrt{3})^5}$.

Pewehue. Представим комплексные числа $\alpha=-1+i$ и $\beta=-1-i\sqrt{3}$ в тригонометрической форме

$$\alpha = -1 + i = r_1(\cos\varphi_1 + i\sin\varphi_1),$$

где

$$r_1 = \sqrt{(-1)^2 + 1^2} = \sqrt{2}, \quad \operatorname{tg} \varphi_1 = -1 \implies \varphi_1 = \frac{3\pi}{4}.$$

Следовательно,

$$\alpha = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right).$$

Также

$$\beta = -1 - i\sqrt{3} = r_2(\cos\varphi_2 + i\sin\varphi_2),$$

где

$$r_2 = \sqrt{1^2 + (\sqrt{3})^2} = 2$$
, $\operatorname{tg} \varphi_2 = \sqrt{3} \Rightarrow \varphi_2 = \frac{4\pi}{3}$.

Следовательно,

$$\beta = -1 - i\sqrt{3} = 2\left(\cos\frac{4\pi}{2} + i\sin\frac{4\pi}{3}\right).$$

$$\frac{(-1+i)^3}{(-1-i\sqrt{3})^5} = \frac{\left[\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)\right]^3}{\left[2\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right)\right]^5} =$$

$$= \frac{(\sqrt{2})^3\left(\cos\frac{9\pi}{4} + i\sin\frac{9\pi}{4}\right)}{2^5\left(\cos\frac{20\pi}{3} + i\sin\frac{20\pi}{3}\right)} =$$

$$= \frac{2\sqrt{2}}{2^5}\left(\cos\left(\frac{9\pi}{4} - \frac{20\pi}{3}\right) + i\sin\left(\frac{9\pi}{4} - \frac{20\pi}{3}\right)\right) =$$

$$= \frac{\sqrt{2}}{16}\left(\cos\left(-\frac{53\pi}{12}\right) + i\sin\left(-\frac{53\pi}{12}\right)\right) = \frac{\sqrt{2}}{16}\left(\cos\frac{19\pi}{12} + i\sin\frac{19\pi}{12}\right).$$

$$Omsem: \frac{\sqrt{2}}{16}\left(\cos\frac{19\pi}{12} + i\sin\frac{19\pi}{12}\right).$$

Задание 6.25. Решить уравнение $x^2 + (3i - 8)x + 13 - 13i = 0$ над полем комплексных чисел.

Peшение. По формулам для корней квадратного уравнения имеем

$$x_{1,2} = \frac{-3i + 8 \pm \sqrt{(3i - 8)^2 - 4(13 - 13i)}}{2} = \frac{-3i + 8 \pm \sqrt{3 + 4i}}{2}.$$

Пусть $\sqrt{3+4i}=a+ib$, где $a,b\in\mathbb{R}$. Возведем обе части этого уравнения в квадрат, получим $3+4i=a^2-b^2+2abi$. Последнее уравнение равносильно системе уравнений

$$\left\{ \begin{array}{l} a^2 - b^2 = 3, \\ 2ab = 4 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a^2 - b^2 = 3, \\ ab = 2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a^2 - b^2 = 3, \\ a = 2/b. \end{array} \right.$$

Решим биквадратное уравнение

$$\frac{4}{b^2} - b^2 - 3 = 0 \quad \Leftrightarrow \quad 4 - b^4 - 3b^2 = 0 \quad \Leftrightarrow \quad b^4 + 3b^2 - 4 = 0.$$

Пусть $b^2=t,\ t>0$, тогда $t^2+3t-4=0$, откуда $t_1=1$, $t_2=-4$. Следовательно, $b=\pm 1,\ a=\pm 2$. Таким образом, получим $\sqrt{3+4i}=\pm (2+i)$. Следовательно,

$$x_{1,2} = \frac{-3i + 8 \pm (2+i)}{2}.$$

Отсюда

$$x_1 = \frac{-3i + 8 + 2 + i}{2} = \frac{10 - 2i}{2} = 5 - i,$$

 $x_2 = \frac{-3i + 8 - 2 - i}{2} = \frac{6 - 4i}{2} = 3 - 2i.$

Omsem: $x_1 = 5 - i$, $x_2 = 3 - 2i$.

Задание 7.25. Решить систему уравнений над полем комплексных чисел:

$$\begin{cases} (2+i)x + (1-i)y = 1, \\ ix + (2-i)y = i. \end{cases}$$

Решение. Найдем определитель системы

$$\Delta = \begin{vmatrix} 2+i & 1-i \\ i & 2-i \end{vmatrix} = (2+i)(2-i) - i(1-i) = 5-i-1 = 4-i.$$

Так как $\Delta \neq 0$, то данную систему можно решить по формулам Крамера:

$$x = \frac{\Delta_1}{\Delta}, \quad y = \frac{\Delta_2}{\Delta},$$

где

$$\Delta_1 = \begin{vmatrix} 1 & 1-i \\ i & 2-i \end{vmatrix} = 2 - i - i(1-i) = 2 - i - i - 1 = 1 - 2i;$$

$$\Delta_2 = \begin{vmatrix} 2+i & 1 \\ i & i \end{vmatrix} = (2+i)i - i = 2i - 1 - i = -1 + i.$$

Отсюда

$$x = \frac{1-2i}{4-i} = \frac{(1-2i)(4+i)}{(4-i)(4+i)} = \frac{4+i-8i+2}{16+1} = \frac{6}{17} - \frac{7}{17}i;$$

$$y = \frac{-1+i}{4-i} = \frac{(-1+i)(4+i)}{(4-i)(4+i)} = \frac{-4-i+4i-1}{16+1} = -\frac{5}{17} + \frac{3}{17}i.$$
 Ombern: $x = \frac{6}{17} - \frac{7}{17}i, y = -\frac{5}{17} + \frac{3}{17}i.$

Задание 8.25. Найти все значения корней $\sqrt[5]{-1-i}$ и изобразить их на плоскости.

Peшение. Представим число -1-i в тригонометрической форме

$$-1 - i = \sqrt{2} \left(\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right).$$

Корни из комплексного числа будем искать по формуле

$$\sqrt[n]{r(\cos\varphi + i\sin\varphi)} = \sqrt[n]{r}\left(\cos\frac{\varphi + 2k\pi}{n} + i\sin\frac{\varphi + 2k\pi}{n}\right),$$

где $k=0,1,\ldots,n-1$. Следовательно

$$\sqrt[5]{\sqrt{2}\left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right)} = \sqrt[10]{2}\left(\cos\frac{\frac{5\pi}{4} + 2k\pi}{5} + i\sin\frac{\frac{5\pi}{4} + 2k\pi}{5}\right),$$

где k = 0, 1, 2, 3, 4.

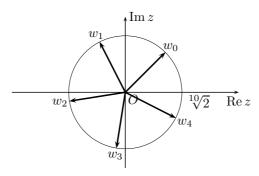


Рис. 2

$$w_0 = \sqrt[10]{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right), \quad w_1 = \sqrt[10]{2} \left(\cos \frac{13\pi}{20} + i \sin \frac{13\pi}{20} \right),$$

$$w_2 = \sqrt[10]{2} \left(\cos \frac{21\pi}{20} + i \sin \frac{21\pi}{20} \right), \quad w_3 = \sqrt[10]{2} \left(\cos \frac{29\pi}{20} + i \sin \frac{29\pi}{20} \right),$$

$$w_4 = \sqrt[10]{2} \left(\cos \frac{37\pi}{20} + i \sin \frac{37\pi}{20} \right).$$

Изобразим найденные корни на комплексной плоскости (рис. 2). Omsem:

$$w_k = \sqrt[10]{2} \left(\cos \frac{5\pi}{4} + 2k\pi \over 5 + i \sin \frac{5\pi}{4} + 2k\pi \over 5 \right), \quad k = 0, 1, 2, 3, 4.$$

Задание 9.25. Исследовать систему линейных уравнений на совместность и решить ее. Найти общее и два любых частных решения:

$$\begin{cases} 2x_1 - 3x_2 + x_3 - x_4 + 2x_5 = 2, \\ 3x_1 + 4x_2 - 2x_3 + 6x_4 + x_5 = 5, \\ 5x_1 + 4x_3 + 2x_4 + x_5 = 7, \\ x_1 + 7x_2 - 3x_3 + 7x_4 - x_5 = 3. \end{cases}$$

Решение. Основная и расширенная матрицы системы уравнений:

$$A = \begin{pmatrix} 2 & -3 & 1 & -1 & 2 \\ 3 & 4 & -2 & 6 & 1 \\ 5 & 0 & 4 & 2 & 1 \\ 1 & 7 & -3 & 7 & -1 \end{pmatrix}, \quad \bar{A} = \begin{pmatrix} 2 & -3 & 1 & -1 & 2 & 2 \\ 3 & 4 & -2 & 6 & 1 & 5 \\ 5 & 0 & 4 & 2 & 1 & 7 \\ 1 & 7 & -3 & 7 & -1 & 3 \end{pmatrix}.$$

Исследуем систему линейных уравнений на совместность. Для этого найдем ранги матриц A и \bar{A} .

$$A = \begin{pmatrix} 2 & -3 & 1 & -1 & 2 \\ 3 & 4 & -2 & 6 & 1 \\ 5 & 0 & 4 & 2 & 1 \\ 1 & 7 & -3 & 7 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -3 & 1 & -1 & 2 \\ 0 & 17 & -7 & 15 & -4 \\ 0 & 15 & 3 & 9 & -8 \\ 0 & -17 & 7 & -15 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -3 & 1 & -1 & 2 \\ 0 & 17 & -7 & 15 & -4 \\ 0 & 0 & 156 & -72 & 76 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Следовательно, $\operatorname{rang} A = 3$.

$$\bar{A} = \begin{pmatrix} 2 & -3 & 1 & -1 & 2 & 2 \\ 3 & 4 & -2 & 6 & 1 & 5 \\ 5 & 0 & 4 & 2 & 1 & 7 \\ 1 & 7 & -3 & 7 & -1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -3 & 1 & -1 & 2 & 2 \\ 0 & 17 & -7 & 15 & -4 & 4 \\ 0 & 15 & 3 & 9 & -8 & 4 \\ 0 & -17 & 7 & -15 & 4 & -4 \end{pmatrix} \rightarrow$$

$$\rightarrow \begin{pmatrix} 2 & -3 & 1 & -1 & 2 & 2 \\ 0 & 17 & -7 & 15 & -4 & 4 \\ 0 & 0 & 156 & -72 & 76 & 8 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Следовательно, rang $\bar{A}=3$.

Таким образом, система линейных уравнений совместна, так как $\operatorname{rang} A = \operatorname{rang} \bar{A} = 3.$

Решим систему линейных уравнений методом Гаусса:

x_1	x_2	x_3	x_4	x_5	b	1		
2	-3	1	-1	2	2	-		
3	4	-2	6	1	5		←	
5	0	4	2	1	7			←
1	7	-3	7	-1	3	-2-	-3	-5
0	-17	7	-15	4	-4	-1-	-19_{7}	$3\neg$
0	-17	7	-15	4	-4	-		
0	-35	19	-33	6	-8		7←	
1	7	-3	7	-1	3			7^{-1}
0	-17	7	-15		4	-4		
0	0	0	0		0	0	-	
0	78	0	54	-	-34	20	$\times 1/2$	
7	-2	0	4		5	9	•	
0	-17	7	-15		4	-4	39€	
7	-2	0	4		5	9		39∗
0	39	0	27	-	-17	10	17	2—
0	0	0	0		0	0		
0	0	273	-126	_	133	14		
273	0	0	210		161	371		
0	39	0	27	-	-17	10		

В этом случае данная система линейных уравнений равносильна системе

$$\begin{cases} 273x_1 + 210x_4 + 161x_5 = 371, \\ 39x_2 + 27x_4 - 17x_5 = 10, \\ 273x_3 - 126x_4 - 133x_5 = 14. \end{cases}$$

Пусть x_1, x_2, x_3 — базисные неизвестные, а x_4, x_5 — свободные. Выразим базисные неизвестные через свободные:

$$\begin{cases} x_1 = \frac{371}{273} - \frac{210}{273}x_4 - \frac{161}{273}x_5, \\ x_2 = \frac{10}{39} - \frac{27}{39}x_4 + \frac{17}{39}x_5, \\ x_3 = \frac{14}{273} + \frac{126}{273}x_4 + \frac{133}{273}x_5. \end{cases}$$

Пусть $x_4=a,\ x_5=d\ (a,d\in\mathbb{R}).$ При этом общее решение имеет вид

$$\boldsymbol{c} = \left(\frac{371}{273} - \frac{210}{273}a - \frac{161}{273}d; \frac{10}{39} - \frac{27}{39}a + \frac{17}{39}d; \frac{14}{273} + \frac{126}{273}a + \frac{133}{273}d; a; d\right).$$

Найдем частные решения.

1. Пусть a = 1, d = 1, тогда

$$x_1 = \frac{371}{273} - \frac{210}{273} - \frac{161}{273} = 0, \quad x_2 = \frac{10}{39} - \frac{27}{39} + \frac{17}{39} = 0,$$

$$x_3 = \frac{14}{273} + \frac{126}{273} + \frac{133}{273} = 1, \quad c_1 = (0; 0; 1; 1; 1).$$

2. Пусть a = -1, d = 0, тогда

$$x_1 = \frac{371}{273} + \frac{210}{273} = \frac{581}{273}, \quad x_2 = \frac{10}{39} + \frac{27}{39} = \frac{37}{39},$$

$$x_3 = \frac{14}{273} - \frac{126}{273} = -\frac{112}{273}, \quad c_2 = \left(\frac{581}{273}; \frac{37}{39}; -\frac{112}{39}; -1; 0\right).$$

Ответ:

$$\mathbf{c} = \left(\frac{371}{273} - \frac{210}{273}a - \frac{161}{273}d; \frac{10}{39} - \frac{27}{39}a + \frac{17}{39}d; \frac{14}{273} + \frac{126}{273}a + \frac{133}{273}d; a; d\right),$$

$$\mathbf{c}_1 = (0; 0; 1; 1; 1); \quad \mathbf{c}_2 = \left(\frac{581}{273}; \frac{37}{39}; -\frac{112}{39}; -1; 0\right).$$

Задание 10.25. Найти общее и какую-либо фундаментальную систему решений однородной системы линейных уравнений

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0, \\ 2x_1 + 3x_2 + x_3 + x_4 - 3x_5 = 0, \\ x_1 + 2x_3 + 2x_4 + 6x_5 = 0, \\ x_1 + 2x_2 - 4x_5 = 0. \end{cases}$$

Решение. Решим однородную систему линейных уравнений методом Гаусса:

	x_1	x_2	x_3	x_4	x_5	
	1	1	1	1	1	$\times (-1)_{\neg} \times (-2)_{\neg}$
	2	3	1	1	-3	-
	1	0	2	2	6	
	1	2	0	0	-4	←
	1	1	1	1	1	←
	0	1	-1	-1	-5	$\times (-1)$
	0	-1	1	1	5	4
	0	1	-1	-1	-5	←
	1	0	2	2	6	
	0	1	-1	-1	-5	
	0	0	0	0	0	
	0	0	0	0	0	
_						

Исходная система уравнений равносильна системе

$$\begin{cases} x_1 + 2x_3 + 2x_4 + 6x_5 = 0, \\ x_2 - x_3 - x_4 - 5x_5 = 0. \end{cases}$$

Пусть x_1, x_2 — базисные неизвестные, а x_3, x_4, x_5 — свободные неизвестные. Выразим базисные неизвестные через свободные:

$$\begin{cases} x_1 = -2x_3 - 2x_4 - 6x_5, \\ x_2 = x_3 + x_4 + 5x_5. \end{cases}$$

Пусть $x_3=d_1,\ x_4=d_2,\ x_5=d_3\ (d_1,d_2,d_3\in\mathbb{R}).$ При этом общее решение имеет вид

$$c(-2d_1-2d_2-6d_3;d_1+d_2+5d_3;d_1;d_2;d_3).$$

Из общего решения найдем фундаментальную систему решений

$$\varepsilon_1 = (-2; 1; 1; 0; 0), \quad \varepsilon_2 = (-2; 1; 0; 1; 0), \quad \varepsilon_3 = (-6; 5; 0; 0; 1).$$

Ответ:

$$c(-2d_1 - 2d_2 - 6d_3; d_1 + d_2 + 5d_3; d_1; d_2; d_3),$$

$$\varepsilon_1 = (-2; 1; 1; 0; 0), \quad \varepsilon_2 = (-2; 1; 0; 1; 0), \quad \varepsilon_3 = (-6; 5; 0; 0; 1).$$

Задание 11.25. Вычислить ранг матрицы

$$A = \left(\begin{array}{cccc} 1 & 0 & 0 & -1 \\ -2 & 4 & 5 & 7 \\ 12 & 3 & 6 & 21 \\ 1 & 0 & 2 & 3 \\ 2 & -3 & 4 & 3 \end{array}\right).$$

Решение.

$$A = \begin{pmatrix} 1 & 0 & 0 & -1 \\ -2 & 4 & 5 & 7 \\ 12 & 3 & 6 & 21 \\ 1 & 0 & 2 & 3 \\ 2 & -3 & 4 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} \boxed{1} & 0 & 0 & -1 \\ -2 & 4 & 5 & 7 \\ 4 & 1 & 2 & 7 \\ 1 & 0 & 2 & 3 \\ 2 & -3 & 4 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 4 & 5 & 5 \\ 0 & \boxed{1} & 2 & 11 \\ 0 & 0 & 2 & 4 \\ 0 & -3 & 4 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 0 & -3 & -39 \\ 0 & 1 & 2 & 11 \\ 0 & 0 & \boxed{1} & 2 \\ 0 & 0 & 10 & 38 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 0 & -3 & -39 \\ 0 & 1 & 2 & 11 \\ 0 & 0 & \boxed{1} & 2 \\ 0 & 0 & 10 & 38 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Следовательно, ранг матрицы A равен 4, т.е. ${\rm rang}\, A=4$. *Ответ*: ${\rm rang}\, A=4$.

Список рекомендуемой литературы

- 1. Алгебра и геометрия. Типовые расчеты / сост. В. Г. Агаков, А. Н. Быкова, В. П. Бычков, Н. Д. Поляков; Чуваш. ун-т. Чебоксары, 2000.-75 с.
- 2. Беклемишев Я.С. Курс аналитической геометрии и линейной алгебры / Я.С.Беклемишев. М.: Наука, 1984.
- $3.\ Eугров\ \mathcal{A}.\ C.\$ Высшая математика. Элементы линейной алгебры и аналитической геометрии / $\mathcal{A}.\ C.\$ Бугров, $\mathcal{C}.\$ М. Никольский. $\mathcal{M}.:\$ Наука, 1980.
- 4.~ Кузнецов Л. A.~ Сборник заданий по высшей математике (типовые расчеты) / Л. A.~ Кузнецов. M.:~ Высшая школа, 1983.~ 175~ с.
- 5. $\Pi uckynos H.C.$ Дифференциальное и интегральное исчисление для втузов / H.C. Пискунов. М.: Наука, 1966. 576 с.
- $6.\ Cборник$ задач по математике для втузов / под ред. А. В. Ефимова и Б. П. Демидовича. М.: Наука, 1981. Ч. 2. 368 с.
- 7. Элементы векторной алгебры и аналитической геометрии. Элементы линейной алгебры. Введение в математический анализ. Методические указания и контрольные задания для студентов-заочников / сост. А. Н. Быкова, Н. В. Григорьева, Р. И. Медведева, Н. Д. Поляков, Л. Б. Шитова. Чебоксары, 1999.

Оглавление

ЛИНЕЙНАЯ АЛГЕБРА	3
Справочный материал	
Решения заданий 31 варианта	6
АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ	. 15
Справочный материал	. 15
Решения заданий 31 варианта	.17
ПРЕДЕЛЫ	.22
Справочный материал	. 22
Решения заданий 31 варианта	.23
ТИПОВОЙ РАСЧЕТ №1 ПО АЛГЕБРЕ	. 30
Список рекомендуемой литературы	. 44